Source code :: main

[Return]
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#!/usr/bin/python2
# -*- coding: utf-8 -*-


""" CREATED: 7/2012
    AUTHOR: TOMÁŠ ODSTRČIL
"""


import matplotlib
matplotlib.rcParams['backend'] = 'Agg'

from scipy.signal import *

from numpy import *
from matplotlib.pyplot import *
from cwt import cwt
from matplotlib.ticker import MultipleLocator, FormatStrFormatter,LogLocator
import os
import sys

from pygolem_lite import load_adv, saveconst, Shot
from  multiprocessing import Process, Pool, cpu_count
from scipy.stats.mstats import mquantiles


matplotlib.rcParams['xtick.direction'] = 'out'
matplotlib.rcParams['ytick.direction'] = 'out'

matplotlib.rcParams['xtick.major.size'] = 10
matplotlib.rcParams['xtick.minor.size'] = 7

matplotlib.rcParams['ytick.major.size'] = 10
matplotlib.rcParams['ytick.minor.size'] = 7



def Spectrogram((omega0,frequenciCutOff,tvec, signal,name,start, end, plasma)):
    print name

    signal = double(signal)

    startAdv =  max(start*0.8, tvec[0]*1e3)
    endAdv =  min((end-start)*1.2+start, tvec[-1]*1e3)   

    # cut-off signal 
    ind = (tvec > startAdv*1e-3) & (tvec < endAdv*1e-3)
    signal = signal[ind]
    tvec = tvec[ind]
    
    
    dt = mean(diff(tvec))

    N = len(tvec)

    for i in range(3):
	filtered = medfilt(signal, 2*floor(N/500)+1)

	res = abs(signal - filtered)
        ind = argsort(res)
        n_out = floor(N/400)
        ind_2 = in1d(range(N), ind[-n_out:]) & (res > 0.2*amax(filtered))
	signal[ind_2] =  filtered[ind_2]    #remove "n_out" most distant points from moving medianZ
                                               
    print "computing spectrum"
    spec, scale = cwt(signal, dt, dj=0.05, wf='morlet', p=omega0, extmethod='none', extlength='powerof2')
    print "done"



    # approximate scales through frequencies
    freq = (omega0 + sqrt(2.0 + omega0**2))/(4*pi * scale[1:])

    contrast = 10
    #spec = spec[:,(tvec > startAdv )*( tvec <endAdv)] 

    pole = log(1+contrast*abs(spec))



    pole = pole[freq > frequenciCutOff, : ] 
    freq = freq[freq > frequenciCutOff] 

    fig = figure()



    ax = fig.add_axes([0.1, 0.1, 0.8, 0.85])

    img = ax.imshow(pole, extent=[startAdv,endAdv ,freq[-1], freq[0]], aspect='auto')
    ax.set_yscale('log', nonposy='clip')


    minorLocator   = MultipleLocator(1)
    ax.xaxis.set_minor_locator(minorLocator)
    ax.plot([start, start], [amin(freq), amax(freq)], 'w--')
    ax.plot([end, end], [amin(freq), amax(freq)], 'w--')
    ax.axis([startAdv,endAdv,amin(freq), amax(freq)])

    ax.set_xlabel('time [ms]')


    ax.set_ylabel('Frequency [Hz]')
    savefig('data/spectrogram_'+name+'.png')
    clf()

    ind = (tvec > startAdv*1e-3 ) & ( tvec<endAdv*1e-3)
    signal= signal[ ind ]
    plot(1e3*tvec[ ind ],signal,'k',linewidth=0.1)
    #show()

    
    #axvline(linewidth=4)
    #minimum = -max(abs(amin(signal)), abs(amax(signal)))
    #maximum = -minimum
    minimum = mquantiles(signal,0.01)
    maximum = mquantiles(signal, 0.99)

    minimum -= (maximum - minimum)*0.2
    maximum += (maximum - minimum)*0.2

    
    if maximum == minimum:
	axis([startAdv,endAdv,None, None])
    else:
	axis([startAdv,endAdv,minimum, maximum])

    #axis([startAdv,endAdv,None, None])
    

    if plasma:
	plot([start, start], [minimum, maximum], 'r--')
	plot([end, end],     [minimum, maximum], 'r--')
	

    xlabel('time [ms]')
    ylabel('Intensity [a.u.]')
    #show() 
    savefig('data/signal_'+name+'.png')
    clf()

Data = Shot()
plasma = Data['plasma']

if plasma:
    start = Data['plasma_start']*1e3
    end = Data['plasma_end']*1e3
else:
    start = 0
    end = 40
    

tvec, data = Shot()['nistandard6132']
tvec = float_(tvec)

omega0 = 25     #čím větší tím lepší frekvenční rozlišení a opačně
frequenciCutOff = 900

try:
    os.mkdir('data')
except:
    pass

Ndim = size(data,1)

try:
    p = Pool(cpu_count())
    p.map( Spectrogram, [ (omega0,frequenciCutOff,tvec, data[:,i],str(i),start,end, plasma) for i in range(Ndim)])
    p.close()
    
    saveconst('status', 0)

except:
    saveconst('status', 1)

    raise

    
os.system('convert -resize 150 data/spectrogram_1.png icon.png')

Navigation