Loading [MathJax]/jax/output/HTML-CSS/jax.js

Tokamak GOLEM Basic diagnostics

Prerequisities: function definitions

Load libraries

In [1]:
%matplotlib inline
import os
import numpy as np
import matplotlib.pyplot as plt
from scipy import constants, integrate, signal, interpolate
import sqlalchemy   # high-level library for SQL in Python
import pandas as pd

For interactive web figures

In [2]:
import holoviews as hv
hv.extension('bokeh')
import hvplot.pandas

For conditional rich-text boxes

In [3]:
from IPython.display import Markdown

Define global constants.

In [4]:
base_URL = "http://golem.fjfi.cvut.cz/utils/data/{shot_no}/{identifier}" #remote access
data_URL = "http://golem.fjfi.cvut.cz/shots/{shot_no}/DASs/StandardDAS/{identifier}.csv"  # TODO workaround

destination=''
#os.makedirs(destination, exist_ok=True );
shot_no = 0
# try to get thot number form SHOT_NO envirnoment variable, otherwise use the specified one
shot_no = os.environ.get('SHOT_NO', 0)

The DataSource downloads and caches data (by full URL) in a temporary directory and makes them accessible as files.

In [5]:
ds = np.DataSource(destpath='/tmp')
In [6]:
def print_and_save(PhysQuant, Value, Format ):
    print(PhysQuant+" = %.5f" % Value)
    with open(destination+PhysQuant, 'w') as f:
        f.write("%.3f" % Value)
    update_db_current_shot(PhysQuant,Value)    
        
def update_db_current_shot(field_name, value):
    try:
        engine = sqlalchemy.create_engine('postgresql://golem:rabijosille@192.168.2.116/golem_database')
    except:
        return
    engine.execute(f"""UPDATE shots SET "{field_name}"={value} WHERE shot_no IN(SELECT max(shot_no) FROM shots)""")  
    
    
def open_remote(shot_no, identifier, url_template=base_URL):
    return ds.open(url_template.format(shot_no=shot_no, identifier=identifier))

def read_value(shot_no, identifier):
    """Return the value for given shot as a number if possible"""
    value = open_remote(shot_no, identifier, base_URL).read()
    return pd.to_numeric(value, errors='ignore')
    
def read_signal(shot_no, identifier): 
    file = open_remote(shot_no, identifier, data_URL)
    return pd.read_csv(file, names=['Time',identifier],
                     index_col='Time', squeeze=True)  # squeeze makes simple 1-column signals a Series

Ul management

Check the data availability

In [7]:
loop_voltage = read_signal(shot_no, 'LoopVoltageCoil_raw')
ax = loop_voltage.plot(grid=True)
ax.set(xlabel="Time [s]", ylabel="$U_l$ [V]", title="Loop voltage $U_l$ #{}".format(shot_no));

Getting Ul mean

In [8]:
loop_voltage_mean = loop_voltage.abs().mean()
print_and_save("U_loop_mean", loop_voltage_mean, "%.3f")
U_loop_mean = 5.22261

Getting Ul max

The 99% quantile is used to neglect large peaks. This method also ignores NaNs.

In [9]:
loop_voltage_max = loop_voltage.quantile(0.99)
print_and_save("U_loop_max", loop_voltage_max, "%.3f")
U_loop_max = 8.17062

Bt calculation

Check the data availability

It is as magnetic measurement, so the raw data only give dBtdt

In [10]:
dBt = read_signal(shot_no,'BtCoil_raw')
ax = dBt.plot(grid=True)
ax.set(xlabel="Time [s]", ylabel="$dU_{B_t}/dt$ [V]", title="BtCoil_raw signal #{}".format(shot_no));

Integration (it is a magnetic diagnostic) & calibration

In [11]:
K_BtCoil = read_value(shot_no, 'K_BtCoil') # Get BtCoil calibration factor
print('BtCoil calibration factor K_BtCoil={} T/(Vs)'.format(K_BtCoil))
BtCoil calibration factor K_BtCoil=70.42 T/(Vs)
In [12]:
Bt = pd.Series(integrate.cumtrapz(dBt, x=dBt.index, initial=0) * K_BtCoil, 
               index=dBt.index, name='Bt')
ax = Bt.plot(grid=True)
ax.set(xlabel="Time [s]", ylabel="$B_t$ [T]", title="Toroidal magnetic field $B_t$ #{}".format(shot_no));

Getting Bt mean

In [13]:
Bt_mean = Bt.abs().mean()
print_and_save("Bt_mean", Bt_mean, "%.3f")
Bt_mean = 0.06727

Getting Bt max

In [14]:
Bt_max = Bt.quantile(0.99)
print_and_save("Bt_max", Bt_max, "%.3f")
Bt_max = 0.11640

Plasma + Chamber current Ip+ch calculation

Check the data availability

Because it is a magnetic measurement, the raw data only gives dIp+chdt

In [15]:
dIpch = read_signal(shot_no, 'RogowskiCoil_raw')
dIpch -= dIpch.loc[:0.9e-3].mean() # subtract offset
ax = dIpch.plot(grid=True)
ax.set(xlabel="Time [s]", ylabel="$dU_{I_{p+ch}}/dt$ [V]", title="RogowskiCoil_raw signal #{}".format(shot_no));

Integration (it is a magnetic diagnostics) & calibration

In [16]:
K_RogowskiCoil = read_value(shot_no, 'K_RogowskiCoil') # Get RogowskiCoil calibration factor
print('RogowskiCoil calibration factor K_RogowskiCoil={} A/(Vs)'.format(K_RogowskiCoil))
RogowskiCoil calibration factor K_RogowskiCoil=5300000.0 A/(Vs)
In [17]:
Ipch = pd.Series(integrate.cumtrapz(dIpch, x=dIpch.index, initial=0) * K_RogowskiCoil * (-1),
                index=dIpch.index, name='Ipch')
ax = Ipch.plot(grid=True)
ax.set(xlabel="Time [s]", ylabel="$I_{p+ch}$ [A]", title="Total (plasma+chamber) current $I_{{p+ch}}$ #{}".format(shot_no));

Plasma current Ip calculation

In [18]:
R_chamber = read_value(shot_no, 'R_chamber') # Get Chamber resistivity
print('Chamber resistivity R_chamber={} Ohm'.format(R_chamber))
Chamber resistivity R_chamber=0.0097 Ohm
In [19]:
L_chamber = 1.2e-6  # H

The chamber current Ich satisfies the equation (neglecting the mutual inductance with the plasma) Ul=RchIch+LchdIchdt Therefore, the following initial value problem must be solved to take into account the chamber inductance properly dIchdt=1Lch(UlRchIch),Ich(t=0)=0

In [20]:
U_l_func = interpolate.interp1d(loop_voltage.index, loop_voltage)  # 1D interpolator
def dIch_dt(t, Ich):
    return (U_l_func(t) - R_chamber * Ich) / L_chamber
t_span = loop_voltage.index[[0, -1]]
solution = integrate.solve_ivp(dIch_dt, t_span, [0], t_eval=loop_voltage.index, )
Ich = pd.Series(solution.y[0], index=loop_voltage.index, name='Ich')
In [21]:
Ip_naive = Ipch - loop_voltage/R_chamber  # creates a new Series
Ip = Ipch - Ich
Ip.name = 'Ip'
Ip_naive.plot(grid=True, label='naive $I_{ch}=U_l/R_{ch}$')
ax = Ip.plot(grid=True, label=r'using $U_l = R_{ch} I_{ch} - L_{ch} \frac{d I_{ch}}{dt}$')
ax.legend()
ax.set(xlabel="Time [s]", ylabel="$I_{p}$ [A]", title="Plasma current $I_{{p}}$ #{}".format(shot_no));

Getting Ip mean

In [22]:
Ip_mean = Ip.abs().mean()
print_and_save("Ip_mean", Ip_mean/1000, "%.3f")
Ip_mean = 0.02579

Getting Ip max

In [23]:
Ip_max = Ip.quantile(0.99)
print_and_save("Ip_max", Ip_max/1000, "%.3f")
Ip_max = 0.06351

Plasma detect

The plasma detection is based on finding the time points of the greatest peaks in the first (smooth) derivative of Ip which corresponds to the breaks in slope of Ip, i.e. the rise or fall to 0, respectively. The smooth derivative is found using the Savitzky-Golay filter.

In [24]:
Ip_detect = Ip.loc[0.0025:]  # select time > 2.5 ms to avoid thyristors
dt = (Ip_detect.index[-1] - Ip_detect.index[0]) / (Ip_detect.index.size)  # estimated sampling step
print('Sampling step {dt:.3g} s, sampling frequency {fs:.3g} Hz'.format(dt=dt, fs=1/dt))
window_length = int(0.5e-3/dt)  # window fit over 1 ms
if window_length % 2 == 0:  # must not be odd
    window_length += 1
dIp = pd.Series(signal.savgol_filter(Ip_detect, window_length, polyorder=3, deriv=1, delta=dt),
                name='dIp', index=Ip_detect.index) / 1e6 # [MA/s]

threshold = 0.05
plasma_start = dIp[dIp > dIp.max()*threshold].index[0]   # plasma actually starts before the sharpest rise
plasma_end = dIp.idxmin()  # due to inductance smoothing the greatest fall is the best predictor
is_plasma = int(plasma_start < plasma_end and dIp.abs().max() > 0.5)
if not is_plasma:
    #plasma_start = plasma_end = np.nan
    plasma_start = plasma_end = -1
    plasma_lifetime = 0
else:
    plasma_lifetime = plasma_end - plasma_start

print_and_save("b_discharge", is_plasma, "%.3f")
print_and_save("t_plasma_start", plasma_start*1000, "%.3f")
print_and_save("t_plasma_end", plasma_end*1000, "%.3f")
print_and_save("t_discharge_duration", plasma_lifetime*1000, "%.3f")
Sampling step 1e-06 s, sampling frequency 1e+06 Hz
b_discharge = 0.00000
t_plasma_start = -1000.00000
t_plasma_end = -1000.00000
t_discharge_duration = 0.00000
In [25]:
fig, axs = plt.subplots(3, 1, sharex=True, dpi=200)
dIp.plot(grid=True, ax=axs[0])
axs[0].set(xlabel='', ylabel='$dI_p/dt$ [MA/s]', title='Plasma detection from $d I_p/dt$ in #{}'.format(shot_no))
Ip.plot(grid=True, ax=axs[1])
axs[1].set(ylabel="$I_{p}$ [A]")
loop_voltage.plot(grid=True, ax=axs[2])
axs[2].set(xlabel="Time [s]", ylabel="$U_{l}$ [V]")

for ax in axs:
    for t in (plasma_start, plasma_end):
        ax.axvline(t, color='k', linestyle='--', linewidth=2)
        
plt.savefig('plasma_detection')        

Overview graphs and parameters

In [26]:
df_processed = pd.concat(
    [loop_voltage.rename('Ul'), Bt, Ip*1e-3], axis='columns')
df_processed.index = df_processed.index * 1e3  # to ms
df_processed.head()
Out[26]:
Ul Bt Ip
Time
-1.803935 -0.068125 0.000000e+00 -0.000000
-1.802935 -0.069687 -1.602055e-07 0.000059
-1.801935 -0.075625 -3.411519e-07 0.000113
-1.800935 -0.080937 -5.192374e-07 0.000168
-1.799935 -0.074688 -6.844493e-07 0.000232
In [27]:
if is_plasma:
    plasma_lines = hv.VLine(plasma_start*1e3) * hv.VLine(plasma_end*1e3)
else:
    plasma_lines = hv.Curve([])
layout = hv.Layout([df_processed[v].hvplot.line(
    xlabel='', ylabel=l, legend=False, title='', grid=True, group_label=v) * plasma_lines
                    for (v, l) in [('Ul', 'Uₗ [V]'), ('Bt', 'Bₜ [T]'), ('Ip', 'Iₚ [kA]')] ])

plot=layout.cols(1).opts(hv.opts.Curve(width=600, height=200),
                    hv.opts.VLine(color='black', alpha=0.7, line_dash='dashed'),
                    hv.opts.Curve('Ip', xlabel='time [ms]'))
hvplot.save(plot, 'homepage_figure.html')
plot
Out[27]:
In [28]:
fname = 'basig_diagnostics_processed.csv'
In [29]:
df_processed.to_csv(fname)
In [30]:
Markdown("[Time series in graph in CSV format](./{})".format(fname))
In [31]:
units = ['V', 'T', 'kA']
In [32]:
plasma_start_ms = plasma_start *1e3
plasma_end_ms = plasma_end *1e3
plasma_lifetime_ms = plasma_lifetime * 1e3
In [33]:
if is_plasma:
    heading = Markdown("### Basic diagnostics values during plasma\n\n"
                       "plasma lifetime of {:.3g} ms, from {:.3g} ms to {:.3g} ms".format(
                          plasma_lifetime_ms, plasma_start_ms, plasma_end_ms))
else:
    heading = Markdown("### No plasma detected (vacuum discharge)")
heading
Out[33]:

No plasma detected (vacuum discharge)

In [34]:
df_during_plasma = df_processed.loc[plasma_start_ms:plasma_end_ms]
df_overview = pd.DataFrame()
for n in ('mean', 'min', 'max'):
    df_overview[n] = df_during_plasma.aggregate(n)
if is_plasma:
    df_overview['start'] = df_during_plasma.iloc[0]
    df_overview['end'] = df_during_plasma.iloc[-1]
else:
    df_overview['start'] = df_overview['end'] = df_overview['max']
In [35]:
df_overview.insert(0,'units', units)
df_overview.T
Out[35]:
Ul Bt Ip
units V T kA
mean NaN NaN NaN
min NaN NaN NaN
max NaN NaN NaN
start NaN NaN NaN
end NaN NaN NaN

End of overview row

TODO

  • filter out thyristor noise in coils during start-up
  • handle polarities (should only some saved scalars use abs()?)
In [ ]: