These libraries are necessary

Bolometry stuff

Basic info

co-authors: VojtechF, BorekL

Description ...

Main result: Other results ...
In [1]:
# %matplotlib notebook
import numpy as np
from matplotlib import pyplot as plt
import os
from urllib import request

This code takes care of dowloading data from golem server.

~~Data are stored locally, so you can run this notebook multiple times without transfering huge amount of data over the internet.

This single function loads data from golem server (if not already present), stores them localy, and returns desired channel as numpy array.

In [2]:
'''def load_from_golem_db(shot_num, device, channel):
    #path to localy stored data file
   path = "./data/"+str(shot_num)+"/"+channel+".csv"

    #Check whether data already downloaded
    if not os.path.isfile(path) or shot_num == 0:
        #prepare directory structure (if not already present)
        try:
            os.mkdir("./data")
        except(FileExistsError):
            pass
        #directory for each shot
        try:
            os.mkdir("./data/"+str(shot_num))
        except(FileExistsError):
            pass


        #compose URL of desired data on golem server
        url = "http://golem.fjfi.cvut.cz/shots/"+str(shot_num)+"/DASs/"+device+"/" + channel+ ".csv"

        #download now
        print("Downloading data from: " + url)
        request.urlretrieve(url, path)


    return(np.loadtxt(path, delimiter=","))
'''
#for golem processing usage local storing is not desired bahviour as it creates duplicities on golem server
#Simplified function for online data access
#for offline data analysis on own computer, use data storing version for faster access

def load_from_golem_db(shot_num, device, channel):
    #compose URL of desired data on golem server
    url = "http://golem.fjfi.cvut.cz/shots/"+str(shot_num)+"/DASs/"+device+"/" + channel+ ".csv"

    #download now
    print("Downloading data from: " + url)
    return(np.loadtxt(request.urlopen(url), delimiter=","))

Loading data

user need to supply:

  • shot_no: shot number in golem shot database
In [3]:
shot_no = 33305
In [4]:
#Always will be using 20 channels
n=20

#download first channel, just to get number of samples
first = load_from_golem_db(shot_no,"Bolometry", "bolo1")
k = first.shape[0]


#now store time as separate array
t = np.empty(k, dtype=np.float64)
#multiplicate by 1000 to get time in ms
t = first[:,0]*1000

#now allocate array for data
#concatentating array would be quite inefficient
data = np.empty((k, n), dtype=np.float64)

#fill first column with already loaded data
data[:, 0] = first[:, 1]

for i in range(1, n):
    channel = "bolo" + str(i+1)
    device = "Bolometry" if i<12 else "PetiSondaBolom"
    
    try:
        data[:, i] = load_from_golem_db(shot_no, device, channel)[:,1]
    except(request.HTTPError):
        raise SystemExit("Remote data error")
        
#and now load useful values
plasma_start = np.loadtxt(request.urlopen('http://golem.fjfi.cvut.cz/shots/'+str(shot_no)+'/analysis_wave_i/BasicDiagnostics/t_plasma_start'))
plasma_end = np.loadtxt(request.urlopen('http://golem.fjfi.cvut.cz/shots/'+str(shot_no)+'/analysis_wave_i/BasicDiagnostics/t_plasma_end'))
        
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/Bolometry/bolo1.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/Bolometry/bolo2.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/Bolometry/bolo3.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/Bolometry/bolo4.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/Bolometry/bolo5.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/Bolometry/bolo6.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/Bolometry/bolo7.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/Bolometry/bolo8.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/Bolometry/bolo9.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/Bolometry/bolo10.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/Bolometry/bolo11.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/Bolometry/bolo12.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/PetiSondaBolom/bolo13.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/PetiSondaBolom/bolo14.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/PetiSondaBolom/bolo15.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/PetiSondaBolom/bolo16.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/PetiSondaBolom/bolo17.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/PetiSondaBolom/bolo18.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/PetiSondaBolom/bolo19.csv
Downloading data from: http://golem.fjfi.cvut.cz/shots/33305/DASs/PetiSondaBolom/bolo20.csv

Basic plots

Begin with simple plotting all waveforms

In [5]:
plt.rcParams["figure.figsize"] =(16, 20)
fig, ax = plt.subplots(n, sharex=True, sharey=False)
fig.subplots_adjust(hspace=0)
for i in range(n):
    ax[i].plot(t, data[:, i])
ax[0].set_xlim(plasma_start-2, plasma_end+2)
#ax.xlabel("t (ms)")
Out[5]:
(-3.0, 1.0)

Filter data

Some channel tends to fail (Papouch KO DAS ch 2 is known to be problematic)

This code is supposed to detect faulty signals and estimate the signal by averaging neighbohrs

In [6]:
from scipy import signal
from scipy import stats

#calculate pearson correlation coeff
def correlated(ch1, ch2, data=data, threshold = 0.1):
     return (stats.pearsonr(data[:, ch1], data[:, ch2])[0] > threshold)
corrs = np.empty(n-1, dtype=np.bool)
for i in range(n-1):
    corrs[i] = correlated(i, i+1)
    

fails = np.empty(n-1, dtype=np.bool)
for i in range(n-2):
    if (not corrs[i] and not corrs[i+1] and correlated(i, i+2)):
        print("faulty signal detected on channel {}, replacing by averaging neighbohrs".format(2+i))
        #opravit porusena data
        data[:, i+1] = np.mean(data[:, i:i+3:2], axis=1)
        
faulty signal detected on channel 2, replacing by averaging neighbohrs

Countour plot

In [7]:
plt.rcParams["figure.figsize"] =(16,9)
plt.figure()
plt.imshow(data.T, aspect="auto", extent=(t[0], t[-1], n, 1))
plt.colorbar()
plt.xlim(plasma_start-2, plasma_end+2)
plt.xlabel("t [ms]")
plt.ylabel("ch [-]")
plt.savefig('icon-fig')
plt.show()

Plasma position

Following code is meant to calculate plasma position and variance

It is quite posiible, that it does not work correctly or reliably

In [8]:
#center_channel=5
xmin = -10
xmax = +10
In [9]:
weights = np.linspace(xmax, xmin, num=n)


plasma_center = (weights*data).sum(axis=1)/np.abs(weights).sum()


plasma_variance = (weights*(data-plasma_center[:,np.newaxis])**2).sum(axis=1)/np.abs(weights).sum()
In [10]:
plt.rcParams["figure.figsize"] =(16,9)
plt.figure()
plt.plot(t, plasma_center, label = "center")
plt.plot(t, plasma_center + plasma_variance*.5, color="red", linewidth=.2, label="variance")
plt.plot(t, plasma_center - plasma_variance*.5, color="red", linewidth=.2)
plt.xlim(plasma_start -2, plasma_end + 2)
plt.xlabel("t [ms]")
plt.ylabel("position [channel]")
plt.legend()
plt.show()