Inner Stabilisation stuff

Basic info

co-authors: DanielaK, HonzaS, VojtechS

Description ...

Main result: Other results ...
In [1]:
import os
import numpy as np
import matplotlib.pyplot as plt

from scipy import integrate, signal, interpolate
import pandas as pd

import holoviews as hv
hv.extension('bokeh')
import hvplot.pandas
import requests

from IPython.display import Markdown
In [2]:
data_URL = "http://golem.fjfi.cvut.cz/shots/{shot_no}/DASs/LimiterMirnovCoils/{identifier}.csv"  #Mirnov coils and quadrupole
BDdata_URL = "http://golem.fjfi.cvut.cz/shots/{shot_no}/DASs/StandardDAS/{identifier}.csv" #BD = basic diagnostic


shot_no = 33450 # to be replaced by the actual discharge number
#shot_no = 32607 # Test High performance shot
# shot_no = 32660 # Test Low performance shot
# shot_no = 32947
vacuum_shot = 33440  # to be replaced by the discharge command line paramater "vacuum_shot"
# vacuum_shot = 32929 #number of the vacuum shot or 'False'


ds = np.DataSource(destpath='') #/tmp 
In [3]:
def open_remote(shot_no, identifier, url_template=data_URL):
    return ds.open(url_template.format(shot_no=shot_no, identifier=identifier))

def read_signal(shot_no, identifier, url = data_URL): 
    file = open_remote(shot_no, identifier, url)
    return pd.read_csv(file, names=['Time', identifier],
                     index_col = 'Time', squeeze=True)

Data integration and $B_t$ elimination

In [4]:
def elimination (shot_no, identifier, vacuum_shot = False):
    #load data 
    mc = (read_signal(shot_no, identifier))
    mc = mc.replace([np.inf, -np.inf, np.nan], value = 0)
    
    konst = 1/(3.8e-03)
    
       
    if vacuum_shot == False: 
        signal_start = mc.index[0]
        length = len(mc)
        Bt = read_signal(shot_no, 'BtCoil_integrated', BDdata_URL).loc[signal_start:signal_start+length*1e-06]
        if len(Bt)>len(mc):
            Bt = Bt.iloc[:length]            
        if len(Bt)<len(mc):
            mc = mc.iloc[:len(Bt)]
        
        if identifier == 'mc1':
            k=300
        elif identifier == 'mc5':
            k= 14
        elif identifier == 'mc9':
            k = 31
        elif identifier == 'mc13':
            k = -100 
        
        mc_vacuum = Bt/k
    else:
        mc_vacuum = (read_signal(vacuum_shot, identifier))
        mc_vacuum -= mc_vacuum.loc[:0.9e-3].mean()    #remove offset
        mc_vacuum = mc_vacuum.replace([np.inf, -np.inf, np.nan], value = 0)
        mc_vacuum = pd.Series(integrate.cumtrapz(mc_vacuum, x=mc_vacuum.index, initial=0) * konst,
                    index=mc_vacuum.index*1000, name= identifier)    #integration

    mc -= mc.loc[:0.9e-3].mean()  #remove offset
       
    mc = pd.Series(integrate.cumtrapz(mc, x=mc.index, initial=0) * konst,
                    index=mc.index*1000, name= identifier)    #integration
    
    #Bt elimination
    mc_vacuum = np.array(mc_vacuum) 
    mc_elim = mc - mc_vacuum
    
    return mc_elim

Plasma life time

In [5]:
loop_voltage = read_signal(shot_no, 'LoopVoltageCoil_raw', BDdata_URL)

dIpch = read_signal(shot_no, 'RogowskiCoil_raw', BDdata_URL)

dIpch -= dIpch.loc[:0.9e-3].mean()

Ipch = pd.Series(integrate.cumtrapz(dIpch, x=dIpch.index, initial=0) * (-5.3*1e06),
                index=dIpch.index, name='Ipch')

U_l_func = interpolate.interp1d(loop_voltage.index, loop_voltage)  
def dIch_dt(t, Ich):
    return (U_l_func(t) - 0.0097 * Ich) / (1.2e-6/2)
t_span = loop_voltage.index[[0, -1]]
solution = integrate.solve_ivp(dIch_dt, t_span, [0], t_eval=loop_voltage.index, )
Ich = pd.Series(solution.y[0], index=loop_voltage.index, name='Ich')
Ip = Ipch - Ich
Ip.name = 'Ip'

Ip_detect = Ip.loc[0.0025:]

dt = (Ip_detect.index[-1] - Ip_detect.index[0]) / (Ip_detect.index.size) 

window_length = int(0.5e-3/dt)  
if window_length % 2 == 0:  
    window_length += 1
dIp = pd.Series(signal.savgol_filter(Ip_detect, window_length, polyorder=3, deriv=1, delta=dt),
                name='dIp', index=Ip_detect.index) / 1e6 

threshold = 0.05

CD = requests.get("http://golem.fjfi.cvut.cz/shots/%i/Production/Parameters/CD_orientation" % shot_no)
CD_orientation = CD.text

if "ACW" in CD_orientation:
    plasma_start = dIp[dIp < dIp.min()*threshold].index[0]*1e3 
    plasma_end = dIp.idxmax()*1e3 
else: 
    plasma_start = dIp[dIp > dIp.max()*threshold].index[0]*1e3 
    plasma_end = dIp.idxmin()*1e3     


print ('Plasma start =', round(plasma_start, 3), 'ms')
print ('Plasma end =', round(plasma_end, 3), 'ms')
# print (CD_orientation)
Plasma start = 2.564 ms
Plasma end = 13.855 ms

Horizontal plasma position $\Delta r$ calculation

In [6]:
def horpol(shot_no, vacuum_shot=False):
    mc1 = elimination(shot_no, 'mc1', vacuum_shot)
    mc9 = elimination (shot_no, 'mc9', vacuum_shot)
    
    b = 93
    
    r = ((mc1-mc9)/(mc1+mc9))*b
    r = r.replace([np.nan], value = 0)
    
#     return r.loc[plasma_start:]
    return r.loc[plasma_start:plasma_end]
#     return r
In [7]:
r = horpol(shot_no, vacuum_shot)
ax = r.plot()
ax.set(ylim=(-85,85), xlim=(plasma_start,plasma_end), xlabel= 'Time [ms]', ylabel = '$\Delta$r [mm]', title = 'Horizontal plasma position #{}'.format(shot_no))
ax.axhline(y=0, color='k', ls='--', lw=1, alpha=0.4)
Out[7]:
<matplotlib.lines.Line2D at 0x7fe3bd493cd0>

Vertical plasma position $\Delta z$ calculation

In [8]:
def vertpol(shot_no, vacuum_shot = False):
    mc5 = elimination(shot_no, 'mc5', vacuum_shot)
    mc13 = elimination (shot_no, 'mc13', vacuum_shot)
    
    b = 93
    
    z = ((mc5-mc13)/(mc5+mc13))*b
    z = z.replace([np.nan], value = 0)
#     return z.loc[plasma_start:]
    return z.loc[plasma_start:plasma_end]
#     return z
In [9]:
z = vertpol (shot_no, vacuum_shot)
ax = z.plot()
ax.set(ylim=(-85, 85), xlim=(plasma_start,plasma_end), xlabel= 'Time [ms]', ylabel = '$\Delta$z [mm]', title = 'Vertical plasma position #{}'.format(shot_no))
ax.axhline(y=0, color='k', ls='--', lw=1, alpha=0.4)
Out[9]:
<matplotlib.lines.Line2D at 0x7fe3bd130790>

Plasma column radius $a$ calculation

In [10]:
def plasma_radius(shot_no, vacuum_shot=False):
    r = horpol(shot_no, vacuum_shot) 
    z = vertpol(shot_no, vacuum_shot) 
    
    a0 = 85
    a = a0 - np.sqrt((r**2)+(z**2)) 
    a = a.replace([np.nan], value = 0)
#     return a.loc[plasma_start:]
    return a.loc[plasma_start:plasma_end]
#     return a
In [11]:
a = plasma_radius(shot_no,vacuum_shot)
ax = a.plot()
ax.set(ylim=(0,85), xlim=(plasma_start,plasma_end), xlabel= 'Time [ms]', ylabel = '$a$ [mm]', title = 'Plasma column radius #{}'.format(shot_no))
Out[11]:
[(0, 85),
 Text(0, 0.5, '$a$ [mm]'),
 (2.56375568, 13.8547557),
 Text(0.5, 0, 'Time [ms]'),
 Text(0.5, 1.0, 'Plasma column radius #33450')]
In [12]:
plasma_time = []
t = 0
for i in a:
    if i>85 or i <0:
        a = a.replace(i, value = 0)
    else:

        plasma_time.append(a.index[t])

    t+=1
start = plasma_time[0]-1e-03 
end = plasma_time[-1]-1e-03 
print('start =', round(start, 3), 'ms')
print('end =', round(end, 3), 'ms')
start = 2.563 ms
end = 13.853 ms

Graphs

In [13]:
r_cut = r.loc[start:end]
a_cut = a.loc[start:end]
z_cut = z.loc[start:end]
df_processed = pd.concat(
    [r_cut.rename('r'), z_cut.rename('z'), a_cut.rename('a')], axis= 'columns')
df_processed
Out[13]:
r z a
Time
2.564422 31.894914 34.826091 37.775620
2.565422 31.750261 34.936176 37.791786
2.566422 31.614018 35.097580 37.763507
2.567422 31.471604 35.287455 37.717166
2.568422 31.315608 35.489823 37.669303
... ... ... ...
13.849420 -41.513243 42.746012 25.413333
13.850420 -41.485156 42.700703 25.465403
13.851420 -41.501146 42.621634 25.510936
13.852420 -41.525679 42.563187 25.535667
13.853420 -41.507548 42.554947 25.554226

11290 rows × 3 columns

In [14]:
savedata = 'plasma_position_%i.csv' %shot_no 
df_processed.to_csv(savedata)

Data to download

In [15]:
Markdown("[Plasma position data - r, z, a ](./{})".format(savedata))
In [16]:
hline = hv.HLine(0)
hline.opts(
    color='k', 
    line_dash='dashed',
    alpha = 0.4,
    line_width=1.0)

layout = hv.Layout([df_processed[v].hvplot.line(
    xlabel='', ylabel=l,ylim=(-85,85), xlim=(start,end),legend=False, title='', grid=True, group_label=v)
                    for (v, l) in [('r', ' r [mm]'), ('z', 'z [mm]'), ('a', 'a [mm]')] ])*hline

plot=layout.cols(1).opts(hv.opts.Curve(width=600, height=200),  
                    hv.opts.Curve('a', xlabel='time [ms]'))
plot
Out[16]:
In [17]:
fig, axs = plt.subplots(3, 1, sharex=True, dpi=200)
r.plot(grid=True, ax=axs[0])
z.plot(grid=True, ax=axs[1])
a.plot(grid=True, ax=axs[2])
axs[2].set(ylim=(0,85), xlim=(start,end), xlabel= 'Time [ms]', ylabel = '$a$ [mm]')
axs[1].set(ylim=(-85,85), xlim=(start,end), xlabel= 'Time [ms]', ylabel = '$\Delta$z [mm]')
axs[0].set(ylim=(-85,85), xlim=(start,end), xlabel= 'Time [ms]', ylabel = '$\Delta$r [mm]', title = 'Horizontal, vertical plasma position and radius #{}'.format(shot_no))


plt.savefig('icon-fig')