Inner Stabilisation stuff

Basic info

co-authors: DanielaK, HonzaS, VojtechS

Description ...

Main result: Other results ...
In [1]:
import os
import numpy as np
import matplotlib.pyplot as plt

from scipy import integrate, signal, interpolate
import pandas as pd

import holoviews as hv
hv.extension('bokeh')
import hvplot.pandas
import requests

from IPython.display import Markdown
In [2]:
data_URL = "http://golem.fjfi.cvut.cz/shots/{shot_no}/DASs/LimiterMirnovCoils/{identifier}.csv"  #Mirnov coils and quadrupole
BDdata_URL = "http://golem.fjfi.cvut.cz/shots/{shot_no}/DASs/StandardDAS/{identifier}.csv" #BD = basic diagnostic


shot_no = 33453 # to be replaced by the actual discharge number
#shot_no = 32607 # Test High performance shot
# shot_no = 32660 # Test Low performance shot
# shot_no = 32947
vacuum_shot = 33440  # to be replaced by the discharge command line paramater "vacuum_shot"
# vacuum_shot = 32929 #number of the vacuum shot or 'False'


ds = np.DataSource(destpath='') #/tmp 
In [3]:
def open_remote(shot_no, identifier, url_template=data_URL):
    return ds.open(url_template.format(shot_no=shot_no, identifier=identifier))

def read_signal(shot_no, identifier, url = data_URL): 
    file = open_remote(shot_no, identifier, url)
    return pd.read_csv(file, names=['Time', identifier],
                     index_col = 'Time', squeeze=True)

Data integration and $B_t$ elimination

In [4]:
def elimination (shot_no, identifier, vacuum_shot = False):
    #load data 
    mc = (read_signal(shot_no, identifier))
    mc = mc.replace([np.inf, -np.inf, np.nan], value = 0)
    
    konst = 1/(3.8e-03)
    
       
    if vacuum_shot == False: 
        signal_start = mc.index[0]
        length = len(mc)
        Bt = read_signal(shot_no, 'BtCoil_integrated', BDdata_URL).loc[signal_start:signal_start+length*1e-06]
        if len(Bt)>len(mc):
            Bt = Bt.iloc[:length]            
        if len(Bt)<len(mc):
            mc = mc.iloc[:len(Bt)]
        
        if identifier == 'mc1':
            k=300
        elif identifier == 'mc5':
            k= 14
        elif identifier == 'mc9':
            k = 31
        elif identifier == 'mc13':
            k = -100 
        
        mc_vacuum = Bt/k
    else:
        mc_vacuum = (read_signal(vacuum_shot, identifier))
        mc_vacuum -= mc_vacuum.loc[:0.9e-3].mean()    #remove offset
        mc_vacuum = mc_vacuum.replace([np.inf, -np.inf, np.nan], value = 0)
        mc_vacuum = pd.Series(integrate.cumtrapz(mc_vacuum, x=mc_vacuum.index, initial=0) * konst,
                    index=mc_vacuum.index*1000, name= identifier)    #integration

    mc -= mc.loc[:0.9e-3].mean()  #remove offset
       
    mc = pd.Series(integrate.cumtrapz(mc, x=mc.index, initial=0) * konst,
                    index=mc.index*1000, name= identifier)    #integration
    
    #Bt elimination
    mc_vacuum = np.array(mc_vacuum) 
    mc_elim = mc - mc_vacuum
    
    return mc_elim

Plasma life time

In [5]:
loop_voltage = read_signal(shot_no, 'LoopVoltageCoil_raw', BDdata_URL)

dIpch = read_signal(shot_no, 'RogowskiCoil_raw', BDdata_URL)

dIpch -= dIpch.loc[:0.9e-3].mean()

Ipch = pd.Series(integrate.cumtrapz(dIpch, x=dIpch.index, initial=0) * (-5.3*1e06),
                index=dIpch.index, name='Ipch')

U_l_func = interpolate.interp1d(loop_voltage.index, loop_voltage)  
def dIch_dt(t, Ich):
    return (U_l_func(t) - 0.0097 * Ich) / (1.2e-6/2)
t_span = loop_voltage.index[[0, -1]]
solution = integrate.solve_ivp(dIch_dt, t_span, [0], t_eval=loop_voltage.index, )
Ich = pd.Series(solution.y[0], index=loop_voltage.index, name='Ich')
Ip = Ipch - Ich
Ip.name = 'Ip'

Ip_detect = Ip.loc[0.0025:]

dt = (Ip_detect.index[-1] - Ip_detect.index[0]) / (Ip_detect.index.size) 

window_length = int(0.5e-3/dt)  
if window_length % 2 == 0:  
    window_length += 1
dIp = pd.Series(signal.savgol_filter(Ip_detect, window_length, polyorder=3, deriv=1, delta=dt),
                name='dIp', index=Ip_detect.index) / 1e6 

threshold = 0.05

CD = requests.get("http://golem.fjfi.cvut.cz/shots/%i/Production/Parameters/CD_orientation" % shot_no)
CD_orientation = CD.text

if "ACW" in CD_orientation:
    plasma_start = dIp[dIp < dIp.min()*threshold].index[0]*1e3 
    plasma_end = dIp.idxmax()*1e3 
else: 
    plasma_start = dIp[dIp > dIp.max()*threshold].index[0]*1e3 
    plasma_end = dIp.idxmin()*1e3     


print ('Plasma start =', round(plasma_start, 3), 'ms')
print ('Plasma end =', round(plasma_end, 3), 'ms')
# print (CD_orientation)
Plasma start = 2.501 ms
Plasma end = 13.859 ms

Horizontal plasma position $\Delta r$ calculation

In [6]:
def horpol(shot_no, vacuum_shot=False):
    mc1 = elimination(shot_no, 'mc1', vacuum_shot)
    mc9 = elimination (shot_no, 'mc9', vacuum_shot)
    
    b = 93
    
    r = ((mc1-mc9)/(mc1+mc9))*b
    r = r.replace([np.nan], value = 0)
    
#     return r.loc[plasma_start:]
    return r.loc[plasma_start:plasma_end]
#     return r
In [7]:
r = horpol(shot_no, vacuum_shot)
ax = r.plot()
ax.set(ylim=(-85,85), xlim=(plasma_start,plasma_end), xlabel= 'Time [ms]', ylabel = '$\Delta$r [mm]', title = 'Horizontal plasma position #{}'.format(shot_no))
ax.axhline(y=0, color='k', ls='--', lw=1, alpha=0.4)
Out[7]:
<matplotlib.lines.Line2D at 0x7f95b73bd1d0>

Vertical plasma position $\Delta z$ calculation

In [8]:
def vertpol(shot_no, vacuum_shot = False):
    mc5 = elimination(shot_no, 'mc5', vacuum_shot)
    mc13 = elimination (shot_no, 'mc13', vacuum_shot)
    
    b = 93
    
    z = ((mc5-mc13)/(mc5+mc13))*b
    z = z.replace([np.nan], value = 0)
#     return z.loc[plasma_start:]
    return z.loc[plasma_start:plasma_end]
#     return z
In [9]:
z = vertpol (shot_no, vacuum_shot)
ax = z.plot()
ax.set(ylim=(-85, 85), xlim=(plasma_start,plasma_end), xlabel= 'Time [ms]', ylabel = '$\Delta$z [mm]', title = 'Vertical plasma position #{}'.format(shot_no))
ax.axhline(y=0, color='k', ls='--', lw=1, alpha=0.4)
Out[9]:
<matplotlib.lines.Line2D at 0x7f95b1340210>

Plasma column radius $a$ calculation

In [10]:
def plasma_radius(shot_no, vacuum_shot=False):
    r = horpol(shot_no, vacuum_shot) 
    z = vertpol(shot_no, vacuum_shot) 
    
    a0 = 85
    a = a0 - np.sqrt((r**2)+(z**2)) 
    a = a.replace([np.nan], value = 0)
#     return a.loc[plasma_start:]
    return a.loc[plasma_start:plasma_end]
#     return a
In [11]:
a = plasma_radius(shot_no,vacuum_shot)
ax = a.plot()
ax.set(ylim=(0,85), xlim=(plasma_start,plasma_end), xlabel= 'Time [ms]', ylabel = '$a$ [mm]', title = 'Plasma column radius #{}'.format(shot_no))
Out[11]:
[(0, 85),
 Text(0, 0.5, '$a$ [mm]'),
 (2.50059888, 13.8585989),
 Text(0.5, 0, 'Time [ms]'),
 Text(0.5, 1.0, 'Plasma column radius #33453')]
In [12]:
plasma_time = []
t = 0
for i in a:
    if i>85 or i <0:
        a = a.replace(i, value = 0)
    else:

        plasma_time.append(a.index[t])

    t+=1
start = plasma_time[0]-1e-03 
end = plasma_time[-1]-1e-03 
print('start =', round(start, 3), 'ms')
print('end =', round(end, 3), 'ms')
start = 2.5 ms
end = 13.857 ms

Graphs

In [13]:
r_cut = r.loc[start:end]
a_cut = a.loc[start:end]
z_cut = z.loc[start:end]
df_processed = pd.concat(
    [r_cut.rename('r'), z_cut.rename('z'), a_cut.rename('a')], axis= 'columns')
df_processed
Out[13]:
r z a
Time
2.500733 15.145577 -5.103066 69.017829
2.501733 14.991691 -4.848473 69.243779
2.502733 14.818632 -4.596601 69.484827
2.503733 14.621040 -4.333101 69.750391
2.504733 14.401992 -4.087980 70.029063
... ... ... ...
13.852730 -18.761873 40.206141 40.631750
13.853730 -18.786541 40.243211 40.587725
13.854730 -18.795714 40.219437 40.605384
13.855730 -18.775947 40.123371 40.700778
13.856730 -18.725615 40.050557 40.788058

11357 rows × 3 columns

In [14]:
savedata = 'plasma_position_%i.csv' %shot_no 
df_processed.to_csv(savedata)

Data to download

In [15]:
Markdown("[Plasma position data - r, z, a ](./{})".format(savedata))
In [16]:
hline = hv.HLine(0)
hline.opts(
    color='k', 
    line_dash='dashed',
    alpha = 0.4,
    line_width=1.0)

layout = hv.Layout([df_processed[v].hvplot.line(
    xlabel='', ylabel=l,ylim=(-85,85), xlim=(start,end),legend=False, title='', grid=True, group_label=v)
                    for (v, l) in [('r', ' r [mm]'), ('z', 'z [mm]'), ('a', 'a [mm]')] ])*hline

plot=layout.cols(1).opts(hv.opts.Curve(width=600, height=200),  
                    hv.opts.Curve('a', xlabel='time [ms]'))
plot
Out[16]:
In [17]:
fig, axs = plt.subplots(3, 1, sharex=True, dpi=200)
r.plot(grid=True, ax=axs[0])
z.plot(grid=True, ax=axs[1])
a.plot(grid=True, ax=axs[2])
axs[2].set(ylim=(0,85), xlim=(start,end), xlabel= 'Time [ms]', ylabel = '$a$ [mm]')
axs[1].set(ylim=(-85,85), xlim=(start,end), xlabel= 'Time [ms]', ylabel = '$\Delta$z [mm]')
axs[0].set(ylim=(-85,85), xlim=(start,end), xlabel= 'Time [ms]', ylabel = '$\Delta$r [mm]', title = 'Horizontal, vertical plasma position and radius #{}'.format(shot_no))


plt.savefig('icon-fig')