Inner Stabilisation stuff

Basic info

co-authors: DanielaK, HonzaS, VojtechS

Description ...

Main result: Other results ...
In [1]:
import os
import numpy as np
import matplotlib.pyplot as plt

from scipy import integrate, signal, interpolate
import pandas as pd

import holoviews as hv
hv.extension('bokeh')
import hvplot.pandas
import requests

from IPython.display import Markdown
In [2]:
data_URL = "http://golem.fjfi.cvut.cz/shots/{shot_no}/DASs/LimiterMirnovCoils/{identifier}.csv"  #Mirnov coils and quadrupole
BDdata_URL = "http://golem.fjfi.cvut.cz/shots/{shot_no}/DASs/StandardDAS/{identifier}.csv" #BD = basic diagnostic


shot_no = 33456 # to be replaced by the actual discharge number
#shot_no = 32607 # Test High performance shot
# shot_no = 32660 # Test Low performance shot
# shot_no = 32947
vacuum_shot = 33440  # to be replaced by the discharge command line paramater "vacuum_shot"
# vacuum_shot = 32929 #number of the vacuum shot or 'False'


ds = np.DataSource(destpath='') #/tmp 
In [3]:
def open_remote(shot_no, identifier, url_template=data_URL):
    return ds.open(url_template.format(shot_no=shot_no, identifier=identifier))

def read_signal(shot_no, identifier, url = data_URL): 
    file = open_remote(shot_no, identifier, url)
    return pd.read_csv(file, names=['Time', identifier],
                     index_col = 'Time', squeeze=True)

Data integration and $B_t$ elimination

In [4]:
def elimination (shot_no, identifier, vacuum_shot = False):
    #load data 
    mc = (read_signal(shot_no, identifier))
    mc = mc.replace([np.inf, -np.inf, np.nan], value = 0)
    
    konst = 1/(3.8e-03)
    
       
    if vacuum_shot == False: 
        signal_start = mc.index[0]
        length = len(mc)
        Bt = read_signal(shot_no, 'BtCoil_integrated', BDdata_URL).loc[signal_start:signal_start+length*1e-06]
        if len(Bt)>len(mc):
            Bt = Bt.iloc[:length]            
        if len(Bt)<len(mc):
            mc = mc.iloc[:len(Bt)]
        
        if identifier == 'mc1':
            k=300
        elif identifier == 'mc5':
            k= 14
        elif identifier == 'mc9':
            k = 31
        elif identifier == 'mc13':
            k = -100 
        
        mc_vacuum = Bt/k
    else:
        mc_vacuum = (read_signal(vacuum_shot, identifier))
        mc_vacuum -= mc_vacuum.loc[:0.9e-3].mean()    #remove offset
        mc_vacuum = mc_vacuum.replace([np.inf, -np.inf, np.nan], value = 0)
        mc_vacuum = pd.Series(integrate.cumtrapz(mc_vacuum, x=mc_vacuum.index, initial=0) * konst,
                    index=mc_vacuum.index*1000, name= identifier)    #integration

    mc -= mc.loc[:0.9e-3].mean()  #remove offset
       
    mc = pd.Series(integrate.cumtrapz(mc, x=mc.index, initial=0) * konst,
                    index=mc.index*1000, name= identifier)    #integration
    
    #Bt elimination
    mc_vacuum = np.array(mc_vacuum) 
    mc_elim = mc - mc_vacuum
    
    return mc_elim

Plasma life time

In [5]:
loop_voltage = read_signal(shot_no, 'LoopVoltageCoil_raw', BDdata_URL)

dIpch = read_signal(shot_no, 'RogowskiCoil_raw', BDdata_URL)

dIpch -= dIpch.loc[:0.9e-3].mean()

Ipch = pd.Series(integrate.cumtrapz(dIpch, x=dIpch.index, initial=0) * (-5.3*1e06),
                index=dIpch.index, name='Ipch')

U_l_func = interpolate.interp1d(loop_voltage.index, loop_voltage)  
def dIch_dt(t, Ich):
    return (U_l_func(t) - 0.0097 * Ich) / (1.2e-6/2)
t_span = loop_voltage.index[[0, -1]]
solution = integrate.solve_ivp(dIch_dt, t_span, [0], t_eval=loop_voltage.index, )
Ich = pd.Series(solution.y[0], index=loop_voltage.index, name='Ich')
Ip = Ipch - Ich
Ip.name = 'Ip'

Ip_detect = Ip.loc[0.0025:]

dt = (Ip_detect.index[-1] - Ip_detect.index[0]) / (Ip_detect.index.size) 

window_length = int(0.5e-3/dt)  
if window_length % 2 == 0:  
    window_length += 1
dIp = pd.Series(signal.savgol_filter(Ip_detect, window_length, polyorder=3, deriv=1, delta=dt),
                name='dIp', index=Ip_detect.index) / 1e6 

threshold = 0.05

CD = requests.get("http://golem.fjfi.cvut.cz/shots/%i/Production/Parameters/CD_orientation" % shot_no)
CD_orientation = CD.text

if "ACW" in CD_orientation:
    plasma_start = dIp[dIp < dIp.min()*threshold].index[0]*1e3 
    plasma_end = dIp.idxmax()*1e3 
else: 
    plasma_start = dIp[dIp > dIp.max()*threshold].index[0]*1e3 
    plasma_end = dIp.idxmin()*1e3     


print ('Plasma start =', round(plasma_start, 3), 'ms')
print ('Plasma end =', round(plasma_end, 3), 'ms')
# print (CD_orientation)
Plasma start = 2.5 ms
Plasma end = 14.721 ms

Horizontal plasma position $\Delta r$ calculation

In [6]:
def horpol(shot_no, vacuum_shot=False):
    mc1 = elimination(shot_no, 'mc1', vacuum_shot)
    mc9 = elimination (shot_no, 'mc9', vacuum_shot)
    
    b = 93
    
    r = ((mc1-mc9)/(mc1+mc9))*b
    r = r.replace([np.nan], value = 0)
    
#     return r.loc[plasma_start:]
    return r.loc[plasma_start:plasma_end]
#     return r
In [7]:
r = horpol(shot_no, vacuum_shot)
ax = r.plot()
ax.set(ylim=(-85,85), xlim=(plasma_start,plasma_end), xlabel= 'Time [ms]', ylabel = '$\Delta$r [mm]', title = 'Horizontal plasma position #{}'.format(shot_no))
ax.axhline(y=0, color='k', ls='--', lw=1, alpha=0.4)
Out[7]:
<matplotlib.lines.Line2D at 0x7fee60dab6d0>

Vertical plasma position $\Delta z$ calculation

In [8]:
def vertpol(shot_no, vacuum_shot = False):
    mc5 = elimination(shot_no, 'mc5', vacuum_shot)
    mc13 = elimination (shot_no, 'mc13', vacuum_shot)
    
    b = 93
    
    z = ((mc5-mc13)/(mc5+mc13))*b
    z = z.replace([np.nan], value = 0)
#     return z.loc[plasma_start:]
    return z.loc[plasma_start:plasma_end]
#     return z
In [9]:
z = vertpol (shot_no, vacuum_shot)
ax = z.plot()
ax.set(ylim=(-85, 85), xlim=(plasma_start,plasma_end), xlabel= 'Time [ms]', ylabel = '$\Delta$z [mm]', title = 'Vertical plasma position #{}'.format(shot_no))
ax.axhline(y=0, color='k', ls='--', lw=1, alpha=0.4)
Out[9]:
<matplotlib.lines.Line2D at 0x7fee54244f90>

Plasma column radius $a$ calculation

In [10]:
def plasma_radius(shot_no, vacuum_shot=False):
    r = horpol(shot_no, vacuum_shot) 
    z = vertpol(shot_no, vacuum_shot) 
    
    a0 = 85
    a = a0 - np.sqrt((r**2)+(z**2)) 
    a = a.replace([np.nan], value = 0)
#     return a.loc[plasma_start:]
    return a.loc[plasma_start:plasma_end]
#     return a
In [11]:
a = plasma_radius(shot_no,vacuum_shot)
ax = a.plot()
ax.set(ylim=(0,85), xlim=(plasma_start,plasma_end), xlabel= 'Time [ms]', ylabel = '$a$ [mm]', title = 'Plasma column radius #{}'.format(shot_no))
Out[11]:
[(0, 85),
 Text(0, 0.5, '$a$ [mm]'),
 (2.5001288, 14.721128799999999),
 Text(0.5, 0, 'Time [ms]'),
 Text(0.5, 1.0, 'Plasma column radius #33456')]
In [12]:
plasma_time = []
t = 0
for i in a:
    if i>85 or i <0:
        a = a.replace(i, value = 0)
    else:

        plasma_time.append(a.index[t])

    t+=1
start = plasma_time[0]-1e-03 
end = plasma_time[-1]-1e-03 
print('start =', round(start, 3), 'ms')
print('end =', round(end, 3), 'ms')
start = 2.5 ms
end = 14.72 ms

Graphs

In [13]:
r_cut = r.loc[start:end]
a_cut = a.loc[start:end]
z_cut = z.loc[start:end]
df_processed = pd.concat(
    [r_cut.rename('r'), z_cut.rename('z'), a_cut.rename('a')], axis= 'columns')
df_processed
Out[13]:
r z a
Time
2.50057 12.905740 -17.734679 63.066533
2.50157 12.761537 -17.698062 63.180784
2.50257 12.590325 -17.526118 63.420354
2.50357 12.418633 -17.287302 63.714483
2.50457 12.268731 -17.034727 64.007056
... ... ... ...
14.71557 -13.251138 35.970601 46.666245
14.71657 -13.179852 35.969412 46.691945
14.71757 -13.160141 36.027045 46.644592
14.71857 -13.260129 36.088374 46.552610
14.71957 -13.370136 36.089597 46.513384

12220 rows × 3 columns

In [14]:
savedata = 'plasma_position_%i.csv' %shot_no 
df_processed.to_csv(savedata)

Data to download

In [15]:
Markdown("[Plasma position data - r, z, a ](./{})".format(savedata))
In [16]:
hline = hv.HLine(0)
hline.opts(
    color='k', 
    line_dash='dashed',
    alpha = 0.4,
    line_width=1.0)

layout = hv.Layout([df_processed[v].hvplot.line(
    xlabel='', ylabel=l,ylim=(-85,85), xlim=(start,end),legend=False, title='', grid=True, group_label=v)
                    for (v, l) in [('r', ' r [mm]'), ('z', 'z [mm]'), ('a', 'a [mm]')] ])*hline

plot=layout.cols(1).opts(hv.opts.Curve(width=600, height=200),  
                    hv.opts.Curve('a', xlabel='time [ms]'))
plot
Out[16]:
In [17]:
fig, axs = plt.subplots(3, 1, sharex=True, dpi=200)
r.plot(grid=True, ax=axs[0])
z.plot(grid=True, ax=axs[1])
a.plot(grid=True, ax=axs[2])
axs[2].set(ylim=(0,85), xlim=(start,end), xlabel= 'Time [ms]', ylabel = '$a$ [mm]')
axs[1].set(ylim=(-85,85), xlim=(start,end), xlabel= 'Time [ms]', ylabel = '$\Delta$z [mm]')
axs[0].set(ylim=(-85,85), xlim=(start,end), xlabel= 'Time [ms]', ylabel = '$\Delta$r [mm]', title = 'Horizontal, vertical plasma position and radius #{}'.format(shot_no))


plt.savefig('icon-fig')