Load libraries
%matplotlib inline
import os
import numpy as np
import matplotlib.pyplot as plt
from scipy import constants, integrate, signal, interpolate
import sqlalchemy # high-level library for SQL in Python
import pandas as pd
import subprocess
For interactive web figures
import holoviews as hv
hv.extension('bokeh')
import hvplot.pandas
For conditional rich-text boxes
from IPython.display import Markdown
Define global constants.
base_URL = "http://golem.fjfi.cvut.cz/utils/data/{shot_no}/{identifier}" #remote access
data_URL = "http://golem.fjfi.cvut.cz/shots/{shot_no}/Diagnostics/BasicDiagnostics/{identifier}" # TODO workaround
parameters_URL = 'http://golem.fjfi.cvut.cz/shots/{shot_no}/Production/Parameters/{identifier}'
destination='Results/'
#os.makedirs(destination, exist_ok=True );
# try to get thot number form SHOT_NO envirnoment variable, otherwise use the specified one
shot_no = os.environ.get('SHOT_NO', 0)
The DataSource
downloads and caches data (by full URL) in a temporary directory and makes them accessible as files.
ds = np.DataSource(destpath='/tmp')
def print_and_save(phys_quant, value, format_str='%.3f'):
print(phys_quant+" = %.5f" % value)
with open(destination+phys_quant, 'w') as f:
f.write(format_str % value)
update_db_current_shot(phys_quant,value)
def update_db_current_shot_alchemy(field_name, value):
try:
engine = sqlalchemy.create_engine('postgresql://golem@/golem_database?host=/var/run/postgresql')
except:
return
engine.execute(f"""UPDATE shots SET "{field_name}"={value} WHERE shot_no IN(SELECT max(shot_no) FROM shots)""")
def update_db_current_shot(field_name, value):
#os.system('psql -c "UPDATE shots SET '+field_name+'='+str(value)+' WHERE shot_no IN(SELECT max(shot_no) FROM shots)" -q -U golem golem_database')
#os.system('psql -c "UPDATE shots SET \"Ip_mean=3\" WHERE shot_no IN(SELECT max(shot_no) FROM shots)" -q -U golem golem_database')
string="""psql -c 'UPDATE shots SET \'{Ip_mean}\'=3 WHERE shot_no IN(SELECT max(shot_no) FROM shots)' -q -U golem golem_database"""
subprocess.call(["psql -q -U golem golem_database --command='UPDATE shots SET \""+field_name+"\"="+str(value)+" WHERE shot_no IN(SELECT max(shot_no) FROM shots)'"],shell=True)
def open_remote(shot_no, identifier, url_template=base_URL):
return ds.open(url_template.format(shot_no=shot_no, identifier=identifier))
def read_value(shot_no, identifier):
"""Return the value for given shot as a number if possible"""
value = open_remote(shot_no, identifier, base_URL).read()
return pd.to_numeric(value, errors='ignore')
def read_parameter(shot_no, identifier):
return open_remote(shot_no, identifier, parameters_URL).read().strip()
def read_signal(shot_no, identifier):
file = open_remote(shot_no, identifier, data_URL + '.csv')
return pd.read_csv(file, names=['Time',identifier],
index_col='Time', squeeze=True) # squeeze makes simple 1-column signals a Series
def read_local_scalar(fname):
with open("Results/"+fname) as fin:
return float(fin.read())
def correct_inf(signal):
"""Inteprolate Inf values"""
signal = signal.replace([-np.inf, np.inf], np.nan).interpolate()
return signal
t_Bt = float(read_parameter(shot_no, 'TBt')) * 1e-6 # from us to s
t_CD = float(read_parameter(shot_no, 'Tcd')) * 1e-6 # from us to s
offset_sl = slice(None, min(t_Bt, t_CD) - 1e-4)
This part of the algorithm is done with higher priority before the this notebook
is_plasma = read_local_scalar('is_plasma') == 1
t_plasma_start = read_local_scalar('t_plasma_start')
t_plasma_end = read_local_scalar('t_plasma_end')
plasma_lifetime = read_local_scalar('t_plasma_duration')
if is_plasma:
heading = Markdown("### Plasma detected\n\n"
f"plasma lifetime of {plasma_lifetime:.1f} ms, from {t_plasma_start:.1f} ms to {t_plasma_end:.1f} ms")
else:
heading = Markdown("### No plasma detected (vacuum discharge)")
heading
plasma lifetime of 5.3 ms, from 1.8 ms to 7.2 ms
def show_plasma_limits(in_seconds=True):
t_scale = 1e-3 if in_seconds else 1
if is_plasma:
for t in (t_plasma_start, t_plasma_end):
plt.axvline(t * t_scale, color='k', linestyle='--')
loop_voltage = read_signal(shot_no, 'U_Loop')
polarity_CD = read_parameter(shot_no, 'CD_orientation')
if polarity_CD != 'CW': # TODO hardcoded for now!
loop_voltage *= -1 # make positive
loop_voltage = correct_inf(loop_voltage)
loop_voltage.loc[:t_CD] = 0
ax = loop_voltage.plot(grid=True)
show_plasma_limits()
ax.set(xlabel="Time [s]", ylabel="$U_l$ [V]", title="Loop voltage $U_l$ #{}".format(shot_no));
[Text(0.5, 0, 'Time [s]'), Text(0, 0.5, '$U_l$ [V]'), Text(0.5, 1.0, 'Loop voltage $U_l$ #35557')]
It is as magnetic measurement, so the raw data only give $\frac{dB_t}{dt}$
dBt = read_signal(shot_no,'U_BtCoil')
polarity_Bt = read_parameter(shot_no, 'Bt_orientation')
if polarity_Bt != 'CW': # TODO hardcoded for now!
dBt *= -1 # make positive
dBt = correct_inf(dBt)
dBt -= dBt.loc[offset_sl].mean()
ax = dBt.plot(grid=True)
show_plasma_limits()
ax.set(xlabel="Time [s]", ylabel="$dU_{B_t}/dt$ [V]", title="BtCoil_raw signal #{}".format(shot_no));
[Text(0.5, 0, 'Time [s]'), Text(0, 0.5, '$dU_{B_t}/dt$ [V]'), Text(0.5, 1.0, 'BtCoil_raw signal #35557')]
K_BtCoil = float(read_parameter(shot_no, 'SystemParameters/K_BtCoil')) # Get BtCoil calibration factor
print('BtCoil calibration factor K_BtCoil={} T/(Vs)'.format(K_BtCoil))
BtCoil calibration factor K_BtCoil=70.42 T/(Vs)
Bt = pd.Series(integrate.cumtrapz(dBt, x=dBt.index, initial=0) * K_BtCoil,
index=dBt.index, name='Bt')
ax = Bt.plot(grid=True)
show_plasma_limits()
ax.set(xlabel="Time [s]", ylabel="$B_t$ [T]", title="Toroidal magnetic field $B_t$ #{}".format(shot_no));
[Text(0.5, 0, 'Time [s]'), Text(0, 0.5, '$B_t$ [T]'), Text(0.5, 1.0, 'Toroidal magnetic field $B_t$ #35557')]
The Rogowski coil around the chamber measures the total current contained within its boundaries. Therefore, if there is plasma, it measures the sum of the plasma and chamber currents. In a vacuum discharge it measures only the chamber current.
Because it is a magnetic measurement, the raw data only gives $\frac{dI_{p+ch}}{dt}$
dIpch = read_signal(shot_no, 'U_RogCoil')
if polarity_CD == 'CW': # TODO hardcoded for now!
dIpch *= -1 # make positive
dIpch = correct_inf(dIpch)
dIpch -= dIpch.loc[offset_sl].mean() # subtract offset
dIpch.loc[:t_CD] = 0
ax = dIpch.plot(grid=True)
show_plasma_limits()
ax.set(xlabel="Time [s]", ylabel="$dU_{I_{p+ch}}/dt$ [V]", title="RogowskiCoil_raw signal #{}".format(shot_no));
[Text(0.5, 0, 'Time [s]'), Text(0, 0.5, '$dU_{I_{p+ch}}/dt$ [V]'), Text(0.5, 1.0, 'RogowskiCoil_raw signal #35557')]
K_RogowskiCoil = float(read_parameter(shot_no, 'SystemParameters/K_RogowskiCoil')) # Get RogowskiCoil calibration factor
print('RogowskiCoil calibration factor K_RogowskiCoil={} A/(Vs)'.format(K_RogowskiCoil))
RogowskiCoil calibration factor K_RogowskiCoil=5300000.0 A/(Vs)
Ipch = pd.Series(integrate.cumtrapz(dIpch, x=dIpch.index, initial=0) * K_RogowskiCoil,
index=dIpch.index, name='Ipch')
ax = Ipch.plot(grid=True)
show_plasma_limits()
ax.set(xlabel="Time [s]", ylabel="$I_{p+ch}$ [A]", title="Total (plasma+chamber) current $I_{{p+ch}}$ #{}".format(shot_no));
[Text(0.5, 0, 'Time [s]'), Text(0, 0.5, '$I_{p+ch}$ [A]'), Text(0.5, 1.0, 'Total (plasma+chamber) current $I_{p+ch}$ #35557')]
R_chamber = float(read_parameter(shot_no, 'SystemParameters/R_chamber')) # Get Chamber resistivity
print('Chamber resistivity R_chamber={} Ohm'.format(R_chamber))
Chamber resistivity R_chamber=0.0097 Ohm
L_chamber = float(read_parameter(shot_no, 'SystemParameters/L_chamber')) # Get Chamber inductance
print('Chamber inductance L_chamber={} H'.format(L_chamber))
Chamber inductance L_chamber=1e-06 H
The chamber current $I_{ch}$ satisfies the equation (neglecting the mutual inductance with the plasma) $$U_l = R_{ch} I_{ch} + L_{ch} \frac{d I_{ch}}{dt}$$ Therefore, the following initial value problem must be solved to take into account the chamber inductance properly $$\frac{d I_{ch}}{dt} = \frac{1}{L_{ch}}\left( U_l - R_{ch} I_{ch}\right), \quad I_{ch}(t=0)=0$$
U_l_func = interpolate.interp1d(loop_voltage.index, loop_voltage) # 1D interpolator
def dIch_dt(t, Ich):
return (U_l_func(t) - R_chamber * Ich) / L_chamber
t_span = loop_voltage.index[[0, -1]]
solution = integrate.solve_ivp(dIch_dt, t_span, [0], t_eval=loop_voltage.index, )
Ich = pd.Series(solution.y[0], index=loop_voltage.index, name='Ich')
for I in [Ich.rename('$I_{ch}$'), Ipch.rename('$I_{ch}(+I_p)$')]:
ax = I.plot()
ax.legend()
show_plasma_limits()
ax.set(xlabel='Time [s]', ylabel='$I$ [A]', title='estimated chamber current and measured total')
plt.grid()
If there is plasma, the plasma current can be estimated as the difference between the total measured current and the estimated chamber current $I_p=I_{p+ch}-I_{ch}$
if is_plasma:
Ip_naive = Ipch - loop_voltage/R_chamber # creates a new Series
Ip = Ipch - Ich
Ip.name = 'Ip'
Ip_naive.plot(grid=True, label='naive $I_{ch}=U_l/R_{ch}$')
ax = Ip.plot(grid=True, label=r'using $U_l = R_{ch} I_{ch} - L_{ch} \frac{d I_{ch}}{dt}$')
ax.legend()
show_plasma_limits()
ax.set(xlabel="Time [s]", ylabel="$I_{p}$ [A]", title="Plasma current $I_{{p}}$ #{}".format(shot_no));
else:
Ip = Ipch * 0 # no current
heading
plasma lifetime of 5.3 ms, from 1.8 ms to 7.2 ms
fig = plt.figure(dpi=200)
for I in [Ich.rename('$I_{ch}$'), Ipch.rename('$I_{ch}+I_p$'), Ip.rename('$I_p$')]:
ax = I.plot()
ax.legend()
show_plasma_limits()
ax.set(xlabel='Time [s]', ylabel='$I$ [A]', title='estimated plasma and chamber current and measured total')
plt.grid()
plt.savefig('icon-fig.png')
For convenience time is saved and displayed in ms, currents in kA.
df_processed = pd.concat(
[loop_voltage.rename('U_loop'), Bt, Ip*1e-3, Ich*1e-3], axis='columns')
df_processed.index = df_processed.index * 1e3 # to ms
df_processed.head()
U_loop | Bt | Ip | Ich | |
---|---|---|---|---|
Time | ||||
-0.719369 | 0.0 | 0.000000e+00 | 0.0 | 0.0 |
-0.718369 | 0.0 | -3.200649e-08 | 0.0 | 0.0 |
-0.717369 | 0.0 | 8.403406e-08 | 0.0 | 0.0 |
-0.716369 | 0.0 | 2.615821e-07 | 0.0 | 0.0 |
-0.715369 | 0.0 | 3.289888e-07 | 0.0 | 0.0 |
if is_plasma:
plasma_lines = hv.VLine(t_plasma_start) * hv.VLine(t_plasma_end)
Ip_line = df_processed['Ip'].hvplot.line(ylabel='Iᴄʜ, Iₚ [kA]', label='Iₚ', by=[], xlabel='time [ms]')
else:
plasma_lines = Ip_line = hv.Curve([])
layout = df_processed['U_loop'].hvplot.line(ylabel='Uₗ [V]', xlabel='', by=[]) * plasma_lines +\
df_processed['Bt'].hvplot.line(ylabel='Bₜ [T]', xlabel='', by=[]) * plasma_lines +\
df_processed['Ich'].hvplot.line(label='Iᴄʜ', by=[]) * Ip_line *\
plasma_lines
plot = layout.cols(1).opts(
hv.opts.Curve(width=600, height=200, title='', ylim=(0, None), show_grid=True),
hv.opts.VLine(color='black', alpha=0.7, line_dash='dashed')
)
hvplot.save(plot, 'homepage_figure.html')
plot
fname = 'basig_diagnostics_processed.csv'
df_processed.to_csv(fname)
Markdown("[Time series in graph in CSV format](./{})".format(fname))
units = ['V', 'T', 'kA', 'kA']
if is_plasma:
plasma_sl = slice(t_plasma_start, t_plasma_end)
else:
plasma_sl = slice(t_Bt, None) # TODO really use whole discharge ?
df_during_plasma = df_processed.loc[plasma_sl]
df_overview = df_during_plasma.quantile([0.01, 0.5, 0.99]) # use quantiles to skip peaks
df_overview.index = ['min', 'mean', 'max'] # actually quantiles, but easier to understand
if is_plasma:
df_overview.loc['start'] = df_during_plasma.iloc[0]
df_overview.loc['end'] = df_during_plasma.iloc[-1]
else:
df_overview.loc['start'] = df_overview.loc['end'] = np.nan
df_overview.loc['units'] = units
# make units row first
df_overview = df_overview.iloc[np.roll(np.arange(df_overview.shape[0]), 1)]
df_overview
U_loop | Bt | Ip | Ich | |
---|---|---|---|---|
units | V | T | kA | kA |
min | 5.50069 | 0.0521441 | 0.216539 | 0.611642 |
mean | 10.7398 | 0.116814 | 3.31402 | 1.12955 |
max | 26.1338 | 0.174444 | 4.34682 | 2.37417 |
start | 14.3266 | 0.0507819 | 0.0797241 | 1.61326 |
end | 26.057 | 0.175532 | 3.33473 | 1.97679 |
for agg in ('mean', 'max'):
for quantity, value in df_overview.loc[agg].iteritems():
print_and_save(quantity+'_'+agg, value)
U_loop_mean = 10.73984 Bt_mean = 0.11681 Ip_mean = 3.31402 Ich_mean = 1.12955 U_loop_max = 26.13378 Bt_max = 0.17444 Ip_max = 4.34682 Ich_max = 2.37417
print_and_save('U_loop_breakdown', df_overview.loc['start', 'U_loop'])
U_loop_breakdown = 14.32656
print_and_save('t_Ip_max', df_during_plasma.Ip.idxmax())
t_Ip_max = 6.14063