{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import requests\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "shot_no = 46831 # to be replaced by the actual discharge number" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plasma life time" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plasma_start = float(requests.get(f'http://golem.fjfi.cvut.cz/shots/{shot_no}/Diagnostics/PlasmaDetection/Results/t_plasma_start').text)\n", "plasma_end = float(requests.get(f'http://golem.fjfi.cvut.cz/shots/{shot_no}/Diagnostics/PlasmaDetection/Results/t_plasma_end').text)\n", "\n", "\n", "print ('Plasma start =', round(plasma_start, 3), 'ms')\n", "print ('Plasma end =', round(plasma_end, 3), 'ms')\n", "\n", "# convert to s\n", "plasma_start*=1e-3\n", "plasma_end*=1e-3" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = np.load('DAS_raw_data_dir/dataHiRes.npz')\n", "df = pd.DataFrame({ name : data[name] for name in ['time', 'ch1', 'ch2']}, index='time')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df_plasma = df[plasma_start:plasma_end]\n", "df_plasma.plot.scatter(x = 'ch1', y = 'ch2')\n", "plt.savefig('icon-fig.png')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 4 }