
A
s

J
P
a

b

c

h

�
�
�

a

A
A

K
G
D
F

1

a
t
e
c
b
i
i
e
t

u
l
o
p
r

0
h

Fusion Engineering and Design 87 (2012) 2152– 2155

Contents lists available at SciVerse ScienceDirect

Fusion Engineering and Design

jo ur nal homep age : www.elsev ier .com/ locate / fusengdes

 GPU-based real time high performance computing service in a fast plant
ystem controller prototype for ITER

. Nietoa,∗, G. de Arcasa, M. Ruiza, J. Vegab, J.M. Lópeza, E. Barreraa, R. Castrob, D.Sanza, N. Utzel c,
. Makijarvi c, L. Zabeoc

Grupo de Investigación en Instrumentación y Acústica Aplicada. Universidad Politécnica de Madrid, Crta. Valencia Km-7, Madrid 28031 Spain
Asociación EURATOM/CIEMAT para Fusión, Madrid, Spain
ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex, France

 i g h l i g h t s

Implementation of fast plant system controller (FPSC) for ITER CODAC.
GPU-based real time high performance computing service.
Performance evaluation with respect to other solutions based in multi-core processors.

 r t i c l e i n f o

rticle history:
vailable online 1 June 2012

a b s t r a c t

EURATOM/CIEMAT and the Technical University of Madrid UPM are involved in the development of a
eywords:
raphic processing units (GPU)
ata acquisition and processing
usion experiments

FPSC (fast plant system control) prototype for ITER based on PXIe form factor. The FPSC architecture
includes a GPU-based real time high performance computing service which has been integrated under
EPICS (experimental physics and industrial control system). In this work we present the design of this
service and its performance evaluation with respect to other solutions based in multi-core processors.
Plasma pre-processing algorithms, illustrative of the type of tasks that could be required for both control
and diagnostics, are used during the performance evaluation.
. Introduction

The use of GPUs (graphical processing units) to include high par-
llel processing power in data acquisition (DAQ) systems for real
ime data assessment is attracting considerable attention in the sci-
ntific community [1–3]. This is of special relevance in the fusion
ommunity as the requirements of the data acquisition systems to
e used in next generation machines increases due to the need of

ncluding new functionalities for real time data assessment. There
s a need to include new techniques based on pattern recognition,
vent detection and data reduction in addition to their conventional
asks of data acquisition and logging [4].

The goal of this work is to evaluate the possible benefits of
sing GPU based technologies for data preprocessing. In particu-

ar, the performance of a GPU running an algorithm representative

f the type of operations that would be needed in plasma pre-
rocessing has been evaluated in comparison with that obtained
unning the same algorithm in a similar state-of-the-art CPU. Also, a

∗ Corresponding author. Tel.: +34 91 336 5227.
E-mail address: jnieto@sec.upm.es (J. Nieto).

920-3796/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.fusengdes.2012.05.008
© 2012 Elsevier B.V. All rights reserved.

methodology to integrate GPUs in distributed control systems
based on EPICS [5] is proposed.

The hardware test system consists of a commercial Worksta-
tion Hewlett-Packard model Z600, that hosts two Xeon X5550
QuadCore processors at 2.66 Ghz with 4 Gbytes DDR3 RAM, and
an Asus ENGTX580 board to run the GPU tests. This NVIDIA Fermi-
Architecture board has 1536 Mbyte GDDR5 RAM and can maximize
the data transfer rate between the CPU and the GPU using a PCI-
Express Gen 2 Slot interface with 16 data lines. This board includes
16 third generation Streaming Multiprocessors and each multi-
processor houses 32 CUDA cores (512 CUDA cores in total). The
software running in the host processor has been developed in C lan-
guage under RHEL v5.5. Table 1 shows the software configuration
of the system.

2. Algorithm description

A simple search in the Internet will provide several performance

benchmarks, such as [6], reporting the benefits of using GPUs for
several data processing functions. These reports usually compare
the execution time of typical data processing routines running in a
GPU with those obtained in a CPU. Although they provide valuable

dx.doi.org/10.1016/j.fusengdes.2012.05.008
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
mailto:jnieto@sec.upm.es
dx.doi.org/10.1016/j.fusengdes.2012.05.008

J. Nieto et al. / Fusion Engineering and Design 87 (2012) 2152– 2155 2153

Table 1
Software tools and configuration.

Host processor software

OS RedHat Enterprise Linux 5.5
Middleware EPICS 3.14.12 and asynDriver 4.16
Compilers gcc V4.12.20080704 and nvcc V0.2.1221
CPU libraries MKL 10.3 Update 9 and IPP 7.0

i
e
n
m
T
t
p

p
b
i
a
i
l
a
w
G
a

3

t
c
s
s

GPU libraries NVIDIA SDK 3.2, NVIDIA CUBLAS 3.2,
EMPHOTONICS CULA R11

nformation, they are not fully representative of the possible ben-
fits that can be obtained in a real control application, as they do
ot include other issues as the impact of data transfers, develop-
ent of custom processing routines, and system integration issues.

herefore in this work we have selected an algorithm represen-
ative of the type of operations that would be needed in plasma
re-processing.

The chosen algorithm is essentially a best fit code for detecting
osition and amplitude of a spectra composed by a set of Gaussians
ased on Levenberg–Marquardt method [8]. It is used to calculate

on temperature (Ti) from the charge exchange camera installed
t JET. Fig. 1 shows a flowchart describing the algorithm. For each
nput sequence, a set of initial coefficients pointing to the possible
ocation of the Gaussians must be provided. On completion, the
lgorithm provides a fitted version of the input sequence, along
ith the coefficients describing the position and amplitude of the
aussians. Fig. 2 shows a typical example of the input (input data)
nd output (fitted data) sequences.

. Implementation

Another important aspect of this work has been the integra-

ion with the distributed control system middleware, EPICS in this
ase. EPICS is an open source technology that includes a wide
et of tools and applications to implement distributed control
ystems. Using client/server and publish/subscribe techniques to

Fig. 1. Algorithm steps in Levenberg–Marquardt algorithm.
Fig. 2. Input and output sample sequences for TiCameraFit algorithm.

communicate between computers, EPICS not only is able to man-
age local control tasks in these computers but also is able to publish
and monitor their control parameters. Additionally, asynDriver [7]
is an extension for EPICS that simplifies and homogenizes interfaces
with the different devices to control.

EPICS has an important lack for transferring massive data (from
high acquisition rates) between the local tasks of a system. The
classic EPICS links between EPICS records are not “quick” enough
for this purpose, so a new data block links technology have been
implemented between the local concurrent tasks, optimizing data
throughput, minimizing system interrupts and minimizing CPU
consume. DPD (data processing and distribution) is the complete
solution that is compatible with EPICS and asynDriver module (it
only uses components and libraries provided by them), includes the
commented data block link technology and all necessary routing
commands and performance measures.

The system developed runs in a RHEL (RedHat Enterprise Linux)
5.5, with EPICS 3.14.12 and asynDriver 4.16. It has been imple-
mented in C using DPD technology and is composed by the
following modules:

• TiC Data Generator. This module simulates the acquisition of the
input signal by generating a noisy version of a spectra composed
by a set of Gaussians as shown in Fig. 2. The length of the data
blocks can be changed during the system configuration phase as
it would be done in a real situation.

• EPICS Waveform Monitoring. This module is able to monitor input
signals, which are received by its input block links, through EPICS
waveform process variables. The module is able to automatically
detect the type of data that has been received from a signal, and to
generate the corresponding data to be published using an EPICS
waveform process variable.

• GPU TiC Data Fit. This module is the GPU implementation of the
algorithm described. It has been developed using EMPhotonics’
CULA Tools Premium library R11, and NVIDIA’s CUBLAS library
v3.2. Both libraries support different GPU platforms, so they pro-
vide a portable code that can be used with different hardware
setups. In addition some custom functions (kernel functions)
have been developed, such as the one to compute the Jacobian
matrix. The module also includes the data transfers between the
CPU and the GPU.

• CPU TiC Data Fit. This module is the corresponding CPU imple-
mentation. In this case it has been developed using Intel’s Math

Kernel Library (Intel® MKL) v10.3 for 64 bits Linux systems.

From the control point of view, the number of points of every
data block generated by the “TiC Data Generator” module can be

2154 J. Nieto et al. / Fusion Engineering and Design 87 (2012) 2152– 2155

Table 2
GPU vs CPU (MKL-8 cores) execution times.

Block size GPU CPU

Time (ms) SD (%) Time (ms) SD (%)

256 2.86 5 2.75 1
512 2.85 1 4.83 7

1024 3.6 0 8.69 5
2048 5.21 0 16.07 39
4096 16.42 0 28.55 0
8192 42.85 0 55.26 3

c
o
w
p
p
P

•

•

•

m
h
m
o
n
b
p
b

4

m
i
e
m
m
t
t
a
s
a
i
m
h

T
i
m
a
C
c
d
G

Table 3
GPU vs CPU (MKL-1 core) execution times.

Block size GPU CPU

Time (ms) SD (%) Time (ms) SD (%)

256 2.86 5 2.69 1
512 2.85 1 5.09 1

1024 3.6 0 9.21 0
2048 5.21 0 15.93 0
4096 16.42 0 29.09 0
8192 42.85 0 55.44 0

16384 85.40 0 107.92 0

to obtain a deterministic performance. Table 4 shown the improve-
ments obtained the GPU versus a CPU execution with 1 and 8 cores
versions.
16384 85.40 0 107.50 1
32768 168.65 0 210.99 3
65536 334.77 0 425.96 0

onfigured using the corresponding EPICS process variable. The rest
f modules of the system (CPU and GPU TiC Data Fit, and EPICS
aveform monitoring) are able to manage these data blocks inde-
endently of the number of values they carry. Additionally, some
erformance values are monitored using the corresponding EPICS
Vs:

The TiC Data Generator module provides an EPICS PV that mea-
sures the throughput of the generated signal in bytes/s.
Each Data Fit module provides two performance values: an aver-
age value of the number of iterations required by the fitting
algorithm, which can be used to detect convergence problems;
and the execution time of the algorithm.
The block links that connect the different modules of the system
provides two values: percentage of occupancy of the link buffer;
and data transfer rate in the link in bytes/s.

Regarding both implementations of the algorithm, it has to be
entioned that standard coding practices for control algorithms

ave been used, such as pre-allocating memory buffers, etc. Opti-
ization of both algorithms has been based on the use of the

ptimized primitives provided by the corresponding libraries, but
o further optimization techniques, such as pipelining, etc., have
een included as the goal of this work was not to develop the best
ossible code for the algorithm, but to compare the results that
oth platforms can provide with similar implementations.

. Results

Different tests have been developed to automate the bench-
arking process. All of them have been parameterized, so the

mpact on the data block sized can be assessed. In order to measure
xecution times both platforms, GPU and CPU, provide hardware
echanisms that can be used to benchmark both algorithm imple-
entations. The GPU provides a one microsecond resolution timer

hat can be accessed through specific NVIDIA library functions. This
imer has been used during the development phase to analyze the
mount of time taken by each algorithm step in order to detect pos-
ible bottlenecks and to focus coding efforts. The CPU also provides

 hardware timer that can be accessed through the correspond-
ng libraries, but with a much higher resolution as it runs at the

icroprocessor’s clock, in our case 2.26 GHz. Therefore this timer
as been used to obtain all performance measurements.

The following tables present a summary of the results obtained.
able 2 shows the execution times obtained when the CPU module
s allowed to use all available cores. In this case the GPU is not

uch faster than the CPU, but it has to be notice that we comparing
 low cost GPU, in the order of 500D/board, with a top-of-scale

PU, in the order of 1500D/microprocessor. But even under these
ircumstances, the GPU is able to overperform the CPU as the input
ata block size increases. This is normal as it is well known that
PUs are especially interesting for processing high amount of data.
32768 168.65 0 216.97 0
65536 334.77 0 445.74 0

But execution times are not the only important aspect to con-
sider in control algorithms. An even more important aspect is
determinism. Table 2 uses the standard deviation of the execution
time of each implementation through a set of 100 runs in order to
assess its determinism. If all cores are used to obtain a faster imple-
mentation, determinism is compromised as the impact of other
tasks, including the operation system, is high. This is shown more
clearly in Table 3, where the number of cores that the CPU imple-
mentation is able to use is restricted to its minimum, or in Fig. 3
where the time evolution of the execution time for each configu-
ration is shown together with the occupancy of the 8 CPU cores. Of
course the price paid on the execution time on the CPU is compen-
sated with higher determinism. On the contrary, the determinism
of the GPU is almost invariable, as this device is only used to per-
form this task, and therefore the only source of variability could
come from the data transfer process. For the data block sizes used
during the tests, the time of the data transfers is small enough such
as to obtain an almost ideally deterministic behavior. In our opinion
this can be one of the most important benefits of GPUs as they do
not require the use of real time extensions of the operating systems
Fig. 3. GPU execution times vs CPU execution times, CPU occupancy 8 cores version.

J. Nieto et al. / Fusion Engineering and

Table 4
GPU improvements.

Block size GPU vs CPU-8t GPU vs CPU-1t

256 −3.85% −6.36%
512 40.94% 44.02%

1024 58.14% 60.49%
2048 67.54% 67.26%
4096 42.49% 43.57%
8192 22.45% 22.70%

16384 20.56% 20.86%
32768 20.07% 22.27%
65536 21.41% 24.90%

t
t
a
a
g
s
s
t
o

o
G
G
o
n
t
a
c
e
s
6
i
o
1
w
T

[

Fig. 4. Execution times in Tesla GPU vs Fermi GPU.

In order to assess the real time capability of a system solution
he real time constraints must be defined first. In our case, real
ime performance is achieved as long as the time needed to run the
lgorithm for a data block of known length, including data handling
nd processing, is less than the time it takes to acquire it, minus a
uard time included to account for non deterministic behaviors,
uch as the ones discussed in the previous paragraphs. So once the
ampling frequency of the input data is known, the data shown in
he following tables permits us to assess the real time capabilities
f the implementation for a given guard time.

In order to evaluate the performance over two generations
f NVDIA boards, the tests described above were repeated for a
TX580 (Fermi technology) card and a Tesla C1060 card (4 GB
DDR3 RAM with 240 CUDA cores). Fig. 4 shows the execution time
n both cards and the improved performance obtained with the
ew Fermi family, due to the total number of cores in both archi-
ectures, 240 against 512 in Fermi. Also the core clock in the new
rchitecture has been updated from 1296 MHz to 1544 MHz. Fermi
ards include third 16 generation streaming multiprocessor (SM),
ach of which contains 32 CUDA processors. Each CUDA proces-
or has a fully pipelined integer arithmetic logic unit (ALU) and a
4 bit floating point unit (FPU) compatible with the IEEE 754-2008

ndustry standard for floating-point arithmetic solving the problem

f limited precision. Each SM on the GTX 580 is able to execute up to
6 double precision fused multiply-add (FMA) operations per clock
ith a peak throughput of 16 × 16 × 1544 MHz × 2 = 790.5 GFLOPS.

hese new features introduced in the Fermi cards not only mean a

[

[

 Design 87 (2012) 2152– 2155 2155

new boost in performance as shown in Fig. 4, but also more suit-
ability for control and data analysis applications, as it solves the
problem of limited precision operations.

However, GPUs are probably not the best option for pure control
applications, meaning those that deal with small data blocks, due
to the overhead included in data handling and the difficulties to
solve synchronization issues. Other technologies, such as FPGAs are
proving to be much more suitable in these cases [9–12]. But for
“real time” data analysis applications, meaning those that deal with
medium to large data block sizes and complex algorithms, GPUS
are becoming a very interesting alternative, even outperforming
FPGAs thanks to their increase in floating point processing power.
In our opinion, generally speaking, and as a rule of thumb, FPGAs
are specially suited for control and data preprocessing applications,
whereas GPUs are becoming a good alternative for solving complex
data analysis tasks in real time.

Finally, another important feature to note is the power saving of
the GPU-based platforms, as the consumption required to achieve
the same performance CPU systems is greater.

Acknowledgments

This work is funded by the Spanish Ministry of Science and
Technology under the Projects nos. ENE2009-10280 and ENE2008-
08294/FTN and the contract ITER/CT/09/10001533.

This work, supported by the European Communities under the
contract of Association between EURATOM/CIEMAT, was carried
out within the framework of the European Fusion Development
Agreement. The views and opinions expressed herein do not nec-
essarily reflect those of the European Commission.

References

[1] G. Collazuol, G. Lamanna, M. Sozzi, A trigger system based on graphics process-
ing unit (GPU), in: Proceedings of the 17th IEEE-NPSS Real Time Conference,
2010.

[2] S. Chilingaryan, A. Kopmann, A. Mirone, T. dos Santos Rolo, A GPU-based
architecture for real-time data assessment at synchrotron experiments, in:
Proceedings of the 17th IEEE-NPSS Real Time Conference, 2010.

[3] S. Gorbunov, et al., ALICE HLT high speed tracking and vertexing, in: Proceedings
of the 17th IEEE-NPSS Real Time Conference, 2010.

[4] J. Vega, A. Murari, B. Carvalho, G. de Arcas, et al., New developments at JET
in diagnostics, real-time control, data acquisition and information retrieval
with potential application to ITER, Fusion Engineering and Design 84 (2009)
2136–2144.

[5] “EPICS home web page”, http://www.aps.anl.gov/epics.
[6] Tesla C2050 Performance Benchmarks. http://www.microway.com/pdfs/

TeslaC2050-Fermi-Performance.pdf.
[7] “asynDriver home web page”, http://www.aps.anl.gov/epics/modules/soft/

asyn/.
[8] J.J. Moré, The Levenberg–Marquardt algorithm: implementation and theory,

Lecture Notes in Mathematics 630 (1978) 105–116.
[9] M. Ruiz, et al., Real time disruptions detection in JET implemented with the

ITMS platform using FPGA based IDAQ, in: Proceedings of the 17th IEEE-NPSS
Real Time Conference, 2010.

10] L. Esteban, et al., Continuous plasma density measurement in TJ-II infrared
interferometer – advanced signal processing based on FPGAs, Fusion Engineer-

ing and Design 85 (3–4) (2010) 328–331.

11] I. Balboa, B. Huang, G. Naylor, et al., Laser beam combiner for thomson scattering
core LIDAR, Review of Scientific Instruments 81 (10) (2010).

12] V. Svoboda, B. Huang, J. Mlynar, et al., Multi-mode remote participation on the
GOLEM tokamak, Fusion Engineering and Design 86 (6–8) (2011) 1310–1334.

http://www.aps.anl.gov/epics
http://www.microway.com/pdfs/TeslaC2050-Fermi-Performance.pdf
http://www.microway.com/pdfs/TeslaC2050-Fermi-Performance.pdf
http://www.aps.anl.gov/epics/modules/soft/asyn/
http://www.aps.anl.gov/epics/modules/soft/asyn/

	A GPU-based real time high performance computing service in a fast plant system controller prototype for ITER
	1 Introduction
	2 Algorithm description
	3 Implementation
	4 Results
	Acknowledgments
	References

