OF THE CZECH ACADEMY OF SCIENCES

EMTRAIC 2024

He discharges with transition on GOLEM - spectroscopic study

Beatriz García¹, Momoko Kato²

Supervisors: Vladimir Weinzettl³, Diana Naydenkova³ Helpers: GOLEM team²

Affiliations: ¹ Aix-Marseille University, ² FNSPE, Czech Technical University in Prague , ³ Institute of Plasma Physics of the CAS

Introduction

Motivation What is behind the transition in He discharges in GOLEM?

High-speed camera (40 kfps, time evolution of the narrow spatial stripe)

CURRENT TASKS

- 1) Spectral Calibration
- **2)** Critical parameters? \rightarrow Ip scan (1-2 kA)
- **3) Effect of breakdown and B_T ? \rightarrow B_T shift scan**
- 4) Spectra analysis \rightarrow Time evolution of spectra lines, search for impurities.

Set up: GOLEM TOKAMAK

- Small university tokamak at FNSPE CTU in Prague

• Compact spectrometers (NUV-NIR spectral range)

Compact spectrometers (Czerny-Turner type with grating & CCD)

Spectral range

Spectrometers at GOLEM connected with the tokamak via optical fibers

Spectra Calibration

Extra slides...

l_p scan

SHOT NUMBER	U _{CURRENT DRIVE} [V]		I _{P, MAX} [kA]
46993	350		1.10
46996	350		1.10
46998	400		1.35
47000	450		1.55
47002	500		1.75
47001	550		1.90
46999	600		2.05
46997	650		2.15
46991	700		2.20
46994	700	7	2.25

Table of shots with increasing plasma current maximum.

Evolution of plasma parameters for shots with different plasma current.

I_p scan: Color transition

lp scan: Spectra

EMTRAIC 2024 - IPP Prague - 13/12/2024

He I (667.8 nm)

Hα (656.3 nm)

Source: Atmosphere (H_2O) , in-vessel materials, previous shots, PVC

EMTRAIC 2024 - IPP Prague - 13/12/2024

CI II (479.46 nm)

B_T shift scan: Breakdown conditions, effect of B_T

	-				
SHOT NUMBER	time delay [ms]		U (Current drive) [V]	I _{P, MAX} [kA]	B _t (at I _{P, MAX}) [T]
47000	0		450	1.6	0.27
47008	1		450	1.8	0.35
47005	2		450	1.7	0.37
47007	3	,	450	1.7	0.39

Table of shots with similar current drive values but different toroidal magnetic field shift.

B_T shift scan: Color transition, MHD

Spectral mystery

FoundNot found?

Neutral (I)	Ionization energy [eV]	1st ionic state (II)	Ionization energy [eV]	2nd ionic state (III)
He	24.59	He+		
н	13.60			
С	11.26	C+	24.38	C ²⁺
0	13.62	O+	35.12	O ²⁺
Ν	14.53	N+	29.60	N ²⁺
CI	12.97	Cl+	23.8	Cl ²⁺

• Overlapping lines

Conclusions

1) Spectral Calibration \rightarrow newly done for Halpha, UV spectrometers \bigoplus

- **1) Critical parameters** \rightarrow smooth behaviour in I_p (I_{p,crit} not found)
- 1) Effect of breakdown and $B_T \rightarrow no B_T$ dependence. \rightarrow changes MHD activity

1) Spectra analysis \rightarrow Time evolution of peaks \bigoplus

- \rightarrow Light (Z<20) impurities found to be responsible for color transition \bigoplus
- → Lines of higher ionization states not confirmed (but not ruled out either)

Deep analysis using the measured data possible

References

[1] P. Macha et al 2023 Nucl. Fusion 63 104003; https://doi.org/10.1088/1741-4326/acf1af

[2] Kramida, A., Ralchenko, Yu., Reader, J. and NIST ASD Team (2024). NIST Atomic Spectra Database (version 5.12), [Online]. Available: https://physics.nist.gov/asd [Mon Dec 09 2024]. National Institute of Standards and Technology, Gaithersburg, MD. DOI: <u>https://doi.org/10.18434/T4W30F</u>

[3] GUIRLET Rémy, providing graph of the fractional abundances of Carbon

Extra slides

SPECTROSCOPY / SPECTROMETER SET-UP

: IPP

COMPASS INSTITUTE OF PLASMA PHYSICS ASCH

Spectral Calibration

allows precise wavelength assignment

- Hg-2 (Hg+Ar) spectral calibration source: UV-IPP spectrometer calibrated (60 ms); usable for VIS-TG (done within SUMTRAIC 2024), IR-IPP and VIS-IPP
- Ne-2 spectral calibration source: Halpha-IPP spectrometer calibrated (1.6 ms, partly removed fibre); usable for VIS-IPP

233.652 296.238 962.136 313.183 313.183 314.148 404.538 404.638 435.813 570.660 577.660 577.660 577.722 772.294 772.294 772.376 772.376 90.616 812.144 866.794	Mercury Tigit	540.056 57%,441 582,740 584,740 584,740 584,740 594,442 597,553 602,000 607,435 602,000 607,435 609,816 614,306 614,306 614,308 613,526 613,427 613,426 614,426 614,426 614,426 614,426 614,426 614,426 614,426 614,426 614,42
HISTARS	G-2 CALIBRATION URCE	746.887 751.577 754.404

Nepe

Spectral calibration of Halpha-IPP

Spectral calibration of Halpha-IPP

- Wavelength difference $\Delta \lambda \sim 0.1$ nm against the manufacturer's calibration
- Resolution per pixel ~ 0.025 nm/pixel \rightarrow ~ 4 pixels systematic shift, if not included
- FWHM ~ 0.055 nm

UV with HG calibration source UV with Hg calibration source Wavelength difference against manufacturer's 0.1175 per pixel [nm] 0.20 difference [nm] 0.1150 0.18 0.1125 0.16 resolution 0.1100 0.14 Wavelength 0.1075 0.12 Navelength 0.1050 0.10 0.08 0.1025 250 300 350 450 250 750 1000 1250 1500 1750 400 500 0 Calibrated wavelength [nm] Pixel no.

- Around the center λ difference ~ 0.07nm
- Blue region λ difference ~ 0.09nm
 - \rightarrow Small difference

- Around the center λ resolution per pixel ~ 0.11 nm/pixel
- Blue region λ resolution per pixel ~ 0.106 nm/pixel

2000

UV Spectral Calibration

UV with Hg calibration source

EMTRAIC 2024 - IPP Prague - 13/12/2024

U _{CD} : 400V
t _{Start} : 3.13 ms
t _{End} : 15.52 ms
∆t : 12.39 ms
lp_max : 1.3 kA

Plasma overview from cameras in #46998

Shot 47002

U_cd : 500 V
t_start : 2.08 ms
t_end : 13.50 ms
∆t : 11.42 ms
lp_max : 1.8 kA

30

25

l_p scan

Shot 46991

U_{CD}: 700 V t_{Start} : 1.60 ms t_{End} : 10.47 ms Δt : 8.87 ms I_{p,max} : 2.2 kA

Plasma overview from cameras in #46991

Ip scan: Time evolution

extra

extra

EMTRAIC 2024 - IPP Prague - 13/12/2024

Spectrum of He discharge on COMPASS

IR 20 μ s, VIS 3 μ s, UV 50 μ s, Halpha 20 μ s

He II (656.02 nm)

Standard deviation

wavelength - color

https://www.agcled.com/blog/basic-information-of-the-visible-light.html

https://www.pythoninformer.com/computer-science/colour/rgb-colour/

rgb(0%, 0%, 0%)	rgb(50%, 0%, 0%)	rgb(100%, 0%, 0%)
rgb(0%, 50%, 0%)	rgb(50%, 50%, 0%)	rgb(100%, 50%, 0%)
rgb(0%, 100%, 0%)	rgb(50%, 100%, 0%)	rgb(100%, 100%, 0%)
rgb(0%, 0%, 50%)	rgb(50%, 0%, 50%)	rgb(100%, 0%, 50%)
rgb(0%, 50%, 50%)	rgb(50%, 50%, 50%)	rgb(100%, 50%, 50%)
rgb(0%, 100%, 50%)	rgb(50%, 100%, 50%)	rgb(100%, 100%, 50%)
rgb(0%, 0%, 100%)	rgb(50%, 0%, 100%)	rgb(100%, 0%, 100%)
rgb(0%, 50%, 100%)	rgb{50%, 50%, 100%}	rgb(100%, 50%, 100%)
rgb(0%, 100%, 100%)	rgb(50%, 100%, 100%)	rab(100%, 100%, 100%)

	Se B ≸ G	8 Y8 08	R 8	
Color	Wavelength (nm)	Frequency (THz)	Photon energy (eV)	
violet	<mark>380-450</mark>	670790	2.75-3.26	
blue	450-485	620-670	2.56-2.75	
cyan	485-500	600-620	2.48-2.56	
green	500-565	530-600	2.19-2.48	
yellow	565-590	510-530	2.10-2.19	
orange	590-625	480-510	1.98-2.10	
red	625-750	400-480	1.65-1.98	