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ABSTRACT 

Inductively coupled plasma (ICP) is a promising low pressure, high density 

plasma source for material processing and is of great importance to modern plasma 

technology. This thesis summarizes the results of experimental study in a cylindrical ICP 

by using a single Langmuir probe (LP) and optical emission spectroscopy (OES). 

 The electron energy distribution function (EEDF), which contains important 

information of ICP plasma and is necessary for an accurate kinetic description of the low-

pressure discharges, has been investigated with the Langmuir probe by using the 

alternating current (ac) method. Measurements were carried out in different gases 

including both atomic (argon, helium) and molecular (hydrogen, nitrogen) gases. The 

effects of the external discharge parameters such as gas pressure and radio frequency (rf) 

power have been investigated and the different mechanisms that influence the formation 

of the EEDF have been discussed. The radial dependence of the EEPF in the argon 

plasma has also been evaluated. 

 The average electron energy and electron density have also been obtained by 

direct measurement of the electron current-voltage (I-V) curve and the result is consistent 

with the power balance equation. 

Optical emission spectroscopy has been used to study the importance of neutral 

gas heating in the ICP. The method used is based upon simulating and fitting the nitrogen 

emission band (the transition from ,uC Π3 0'=V  to ,gB Π3 0"=V ). Both nitrogen and 

argon plasmas have been studied separately and significant neutral heating has been 

found.  
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Chapter 1 

Introduction 

1.1 Roles of Plasmas in Materials Processing 

Plasma is an ionized gas composed of charged ions, either positive or negative, 

electrons, and neutral particles that grossly maintains charge neutrality [1]. Ionization of 

neutral atoms and molecules requires bombardment of energetic electrons on them and a 

plasma can be maintained only at a high temperature, typically higher than 1 eV. Ions, 

electrons and neutrals in a plasma can have different temperatures depending on the 

collision frequencies among them. Plasmas used for material processing exploit this 

temperature disparity. For example, in the case of plasma reactors used for etching, low 

temperature ions are accelerated through a sheath in which the potential drop is governed 

by a high electron temperature. Plasmas used in material processing are not in thermal 

equilibrium and energy distribution of each species may not necessarily be Maxwellian. 

Plasma-based surface processing is indispensable for high-technology industries 

including large scale integrated circuits, surface coating, ion implantation, solar cells, etc. 

[2].  The Moore’s law (see Fig.1.1) in microelectronics industry is still holding largely 

due to the advancement in microlithography and plasma based manufacturing 

technologies. The ruler scale is now approaching 30 nanometers at which the 

conventional chemical etching becomes totally useless.  
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Figure 1.1 Illustration of Moore’s Law (number density of transistors doubling every 
two years. From: http://en.wikipedia.org/wiki/Moore’s_law). 

Plasmas used in materials processing are weakly ionized gases rich with 

chemically active radicals. They provide active environment for plasma chemistry 

characterized by high plasma density and high electron temperature that are not available 

in the conventional chemical processing methods. As mentioned briefly above, the high 

electron temperature in processing plasmas is in fact responsible for active plasma 

chemistry because ions gain energy through acceleration in the sheath, which maintains a 

potential drop characterized by the electron temperature [3]. An electron temperature 

higher than the ion (and neutral) temperature in processing plasmas is possible because 

electrons are heated by an electric field externally applied and temperature equilibration 

with ions does not occur because of insufficient collisions and the low efficiency in 

transferring kinetic energy to ions during collisions. The energetic electrons thus 
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produced by an electromagnetic field will further induce ionization and dissociation 

reactions, which will generate reactive species in the plasma. Thus, it is possible that in 

processing plasmas, chemical reactions, which normally would require high electron 

temperatures, can occur in an environment with relatively low ion and neutral 

temperatures. Furthermore, due to their much higher thermal velocities than those of the 

ions, the fast-moving electrons will rapidly be lost to the walls of the plasma and the 

plasma potential becomes elevated from the wall potential. A thin layer, called plasma 

sheath, will be formed near the wall in which the ion densities are much greater than the 

electron densities, that is . The net positive charge within the sheath leads to a 

potential that is positive in the plasma and drops sharply to zero near the grounded wall. 

Positive ions are accelerated in the sheath while electron loss rate is reduced to match the 

ion loss rate due the same sheath potential relative to the plasma. This leads to directional 

bombardment of the surface by energetic ions.  

in >> en

1.2 Basic Properties of Plasma 

At a sufficiently high temperature, all atoms and molecules are fully ionized. 

However, such fully ionized plasmas are not very useful for plasma processing because 

of the absence of radicals, which promote plasma chemistry. Partially ionized plasmas are 

characterized by an electron temperature in the range of 1 to 10 eV and can be produced 

by various means, including dc electrode discharge, capacitive discharge, electrode-less 

inductive coupling, microwave, arc discharge, etc.. Generally, the plasmas used in 

materials processing are in non-local thermal equilibrium (non-LTE) state. The electron 

temperature in non-LTE plasmas is higher than that of ions (and neutrals) because of 

insufficient collisions. In addition, the energy distribution functions of electrons and ions 
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are not necessarily Maxwellian also because of insufficient collisions among like 

particles (e.g., electron-electron collisions). Charge neutrality is maintained except in the 

ion rich sheath which necessarily develops in the plasma to satisfy ambipolarity (equal 

current of ions and electrons to the wall to maintain charge neutrality) near the vacuum 

chamber wall. 

1.3 Motivation for, and Objectives of the Project 

The study of plasma-material interactions has evolved into an important and 

dynamic field of research. Processing plasma is a complex system and many issues still 

remain unresolved. There are two aspects of plasmas which are important in plasma 

processing: physical and chemical. The physical effects resulting from the plasmas are 

caused by the arrival at the sample of electrons and ions [4]. They may affect the 

substrates significantly if the charged particles have sufficient energy. The chemical 

effects of plasmas result from the chemical activity of species such as ions and radicals 

that are generated in the plasma by electron collision with molecules. So development of 

plasma technologies depends on a better understanding of the physical and chemical 

plasma processes [2, 5, 6], which are directly related to the electron energy distribution 

function (EEDF). EEDF is a measure of the number of electrons within a unit energy 

interval. EEDF in processing plasmas often deviates markedly from Maxwellian 

distribution and knowing EEDF in a given plasma is necessary to calculate various cross-

sections for physical and chemical reactions [7, 8]. 

In most of the low-pressure discharges used for materials processing, electrons 

absorb energy of externally applied electromagnetic field. Ionization, dissociation and 

excitation of molecules are rendered by collisions with energetic electrons. The electrons 
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also transfer kinetic energy to ions through collisions. In the low pressure discharges, 

although the densities of ions and electrons may be much lower than that of the neutrals, 

the charged particles play central roles in sustaining the discharge and producing radicals 

needed for chemical reactions. Since , it is the electrons that dissociate the 

feedstock gas to create the free radicals, etchant atoms, and deposition precursors that are 

required for the chemistry at the substrate. Electrons also ionize the gas to create the 

positive ions that subsequently bombard the substrate. The average electron temperature 

 is usually smaller than the threshold energies  or for dissociation and 

ionization of the feedstock gas molecules. Nevertheless, dissociation and ionization can 

occur because there is a significant number of high energy electrons in the tail region of 

electron energy distribution [2].  

eT >> iT

eT dissE isE

To fully characterized a plasma, it is important to know the energy distribution of 

the electrons, which is not only directly connected to the chemistry of the electronic 

kinetic processes within bulk plasma but also implicitly connected with the internal 

plasma parameters like electron density, temperature and so on [9, 10]. Knowing the 

electron energy distribution function is also the only way to get a better understanding of 

the kinetic processes within the bulk plasma especially when more reliable data for 

inelastic cross section for various chemical reactions are absent [8]. Knowledge of the 

electron energy distribution function will also provide valuable information of power 

absorption [11, 12] and the rate of ionization by electron collisions and so on [13]. 

Recently, there have been many studies [9-10, 14-24] on measurement of the 

plasma characteristics in inductively coupled plasmas (ICPs). However, due to the device 

specifics of the ICP characteristics, it is still difficult to determine the relationship 
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between the external parameters (like gas flow rate, gas pressure and radio (rf) power, 

etc.) and the internal ones (like average electron energy, plasma density, etc.) of ICPs. All 

those internal parameters are important in designing a practical ICP device and to control 

the device performance. In materials processing, the desired results such as uniformity of 

etch and deposition rate depend on the internal parameters of plasmas, which on the other 

hand, depend on the discharge geometry and externally adjustable parameters like rf 

power, process gas and gas pressure. Thus, it is important to know the interdependence of 

the internal and external parameters. Currently, there are different opinions about the 

structure of the EEDF in ICPs. EEDF in ICP tends to be either Maxwellian distribution or 

Druyvesteyn distribution. Furthermore, most of the work has been focused on the inert 

gas argon and only little work was done for the molecular gases such as nitrogen and 

hydrogen, which are promising gases for plasma processing. 

Regarding the kinetics of neutral particles in a processing plasma, it has been 

recently found that, in ICPs, heating of neutral species is significant and gas temperatures 

may exceed by a large margin the room temperature [25-36]. Knowing the neutral 

temperature is also important, for it is one of the key factors that control the electron 

number density and temperature. According to the work in Ref [37], the increase of the 

neutral gas temperature has an almost similar effect on the plasma parameters as the 

decrease of the gas density, which tends to lead to a higher electron temperature but a 

lower number density. Notable distortions of the neutral number densities will occur due 

to heating of the neutral species in ICP; this non-uniformity will further change other 

plasma parameters such as temperatures and number densities of the reactive species, and 

the chemical reactions [38]. 
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1.4 Experimental Methodology and Main Results 

Electron energy distribution function has been measured using a single Langmuir 

probe (LP). Measurements have been carried out over a wide range of gas pressures, 

discharge powers, and spatial positions. The ac (alternating current) method [39, 40] is 

used to obtain EEDF in various plasmas with different gases. In argon discharges, EEDF 

shows a two-temperature Maxwellian structure at low pressures (in the regime of 1 

mTorr) and becomes Druyvesteyn-like at higher pressures above 10 mTorr. For 

discharges in molecular gases (diatomic) like hydrogen and nitrogen, EEDF deviates 

markedly from both the Maxweillian and Druyvesteyn distribution, especially at a 

relatively high pressure and low discharge power. Some other plasma parameters, 

including electron temperature and density have also been found.  

Dependence of the neutral gas temperature on the gas pressure and discharge 

power in inductively coupled plasma source has been investigated by using optical 

emission spectroscopy (OES) [25, 26]. The neutral gas temperature has been determined 

by simulating and fitting the rotational nitrogen emission band (the transition 

from ,  to ,uC Π3 0'=V gB Π3 0"=V ). Both nitrogen and argon plasmas have been studied. 

In the case of argon plasma, about 5% nitrogen was added to the argon gas flow as an 

actinometer. The maximum temperature of Ar gas was found to be as high as 1850 K at 1 

Torr working pressure and 600 W rf power. The temperature increases almost linearly 

with the logarithm of the gas pressure, but changes only slightly with the discharge power 

in the range of 100-600 W.  

In the nitrogen plasma, a sudden decrease in the neutral gas temperature occurs 

when the gas pressure is increased and the discharge power is fixed. This corresponds to 
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a discharge mode transition from H-mode (high plasma density) to E-mode (low plasma 

density). The discharge mode transition can also be verified by the transition of the 

plasma density measured by Langmuir probe. In the H-mode, the gas temperature is 

proportional to the logarithm of the gas pressure as in argon plasma. The gas pressure at 

which the transition occurs increases with the discharge power. In contrast to the case of 

argon plasma, the gas temperature in the nitrogen discharge increases almost linearly 

with the discharge power. The electron density in nitrogen plasma is about 10% of that in 

argon plasma. This may explain the observation that the nitrogen neutral temperature is 

always lower than the argon neutral temperature under the same discharge power and gas 

pressure. 

1.5 Thesis Outline 

This thesis deals with two main subjects. One is the characterization of a low-

pressure inductively coupled plasma by using Langmuir Probe (LP). The other is to 

measure the neutral gas temperature with the Optical Emission Spectroscopy (OES) in 

both argon discharge and nitrogen discharges.  

Chapter 2 describes the ICP plasma source used in this study. Chapter 3 presents 

details of the Langmuir probe theory in low temperature plasma diagnostics. The method 

used to reveal EEDF is also explained. In Chapter 4, the results of LP measurements are 

presented, including the electron density, electron temperature, electron energy 

distribution function and plasma potential. Chapter 5, constituting the second part of this 

thesis, deals with the neutral gas temperature measurement by measure of optical 

emission spectroscopy (OES). A brief description of the molecular theory is given 

followed by the experimental results. Significant neutral heating observed and plausible 
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mechanisms are discussed. In chapter 6, the findings made in the project are summarized. 

Suggestions for future work conclude the thesis. 
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Chapter 2  

Inductively Coupled Plasma 

2.1 Introduction 

Plasma production by inductive coupling of rf waves has been known over a 

century. Hittorf, in 1884, was the first to report on inductive discharge, which was 

described as an “electrode-less ring discharge” [2, 41]. In 1942, G.I. Babat [41] for the 

first time succeeded in sustaining electrode-less ICPs at atmospheric pressure and drew a 

clear distinction between capacitive discharges excited by the electric field (E-discharges) 

and eddy discharges excited by the alternating magnetic field (H-discharges). About 20 

years later, Reed [42] described ways of maintaining argon ICPs in ‘open vessels’ 

(torches). Eckert [3] reviewed the developments that focused on gas pressure exceeding 

20 mTorr in cylindrical coil geometry. In the late 1980s, the planar coil configuration was 

developed [41]. 

Inductively coupled discharges are now the leading plasma sources for plasma 

processing because of the simplicity of concept and no requirement of constant magnetic 

field, which is necessary in electron cyclotron resonance (ECR) and helicon discharges. 

Additional advantage is that a relatively high density plasma can be produced and the ion 

energy can be controlled by adding an extra biasing to substrate holders without affecting 

plasma production. 
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2.2 Basic Principle of Inductively Coupled Plasma and Typical 
Configurations 

Inductively coupled plasma (ICP) sources have been developed in order to 

overcome the drawback of capacitively coupled plasma (CCP), namely, the difficulty in 

independently controlling particle density and energy due to the design of CCP. As 

shown in Fig. 2.1, the CCP usually consists of two metal electrodes, separated by a small 

distance, placed in a reactor. One of these two electrodes is connected to a power supply, 

and the other one is grounded. The self bias voltage that is always created on the driven 

electrode in a capacitively coupled rf discharge leads to the difficulty in independently 

controlling the ion energies [43]. 

 

Figure 2.1 Capacitively Coupled Plasma source. 

Figure 2.2(a) shows a typical diagram of an ICP. In order to generate an ICP, an rf 

current is passed through an antenna and the fields penetrate a dielectric wall into the 

region where a plasma is formed. According to Faraday’s law, the time-varying axial 

magnetic flux density, B , induces an azimuthal electric field as shown in Fig. 2.2(b). 
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(a)                                                                                 (b)  

Figure 2.2 (a) Inductively coupled plasma and (b) the corresponding electric and 
magnetic field. 

The electric field accelerates electrons which absorb energy. They are thermalized 

and acquire an average energy of 1 to 10 eV in ICP. Through collisions, electrons further 

ionize the gas. Because of the large mass compared with that of electrons, ions do not 

gain energy directly from rf field. However, ions are accelerated in the sheath potential 

and ions falling on the vacuum chamber wall may have a kinetic energy corresponding to 

the plasma potential. The ion energy can be controlled by adding an extra biasing. 

Typical gas pressures in ICP devices are below 50 mTorr, while the electron densities are 

relatively high (10 -10 cm10 12 3− ). Furthermore, as in CCP sources, the electron 

temperature is much higher than that of the ions in ICPs, namely, ICPs are non-LTE 

plasmas. An ICP usually has one conducting plate to hold substrates. Such a plate is 

needed to provide a potential reference to the plasma. 
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Figure 2.3 Schematic diagram of inductively driven source: cylindrical geometry. 

Two common ICP coil configurations, planar and cylindrical, are shown in Figure 

2.2 and 2.3 respectively. The planar coil is a flat spiral wound from near the axis to the 

outer radius of the discharge chamber. Inductive coils are commonly driven at 13.56 

MHz or lower, usually using a rf supply through an impedance matching network.  

2.3 ICP Reactor in the Plasma Physics Laboratory  

The ICP system used in the experiment is shown in Fig. 2.4. The cylindrical 

chamber has an inside diameter of 20.75 cm and a height of 37.46 cm from the bottom 

plate to the quartz plate, which seals the top of the chamber. The thickness of the quartz 

plate is 2.54 cm. A planar spiral induction coil is used to couple 13.56 MHz rf power into 

the plasma through an automatic impedance matching network to match the circuit to the 

50 Ω  rf source. The capacitive coupling to the plasma is minimized by introducing a 

Faraday shield between the antenna and the quartz plate.  
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Figure 2.4 The ICP system used in the experiment.  

The vacuum system used in this set-up consists of the combination of two pumps: 

a mechanical roughing pump and a turbo pump. The ultimate pressure achieved with this 

pumping system is in the 710−  Torr range. The system is equipped with four mass flow 
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controllers one each for hydrogen, argon, nitrogen, and methane.  The working pressure 

can be adjusted by controlling the opening of a throttle valve through a pressure feedback 

system. If necessary, four different gases can be introduced into the chamber 

simultaneously.  

The rf power indicated in this thesis is the net power measured at the power 

supply, including the loss in the transmission line and in the matching network. The 

power loss in the transmission line is less than 1% of the total power.  

2.3.1 Impedance Matching Circuit 

If the antenna is directly connected to the 13.56 MHz rf power source, the power 

transfer from the source to antenna would be inefficient because of impedance mismatch 

[2]. In the ICP device, there is an automatic impedance matching network which provides 

a reactance automatically adjusted for changing plasma load impedance. The most 

common configuration in an ICP is the “L-type matching network” consisting of a shunt 

capacitor which has susceptance B Cω=  and a series inductor which has a 

reactance X Lω= . The one used in this set-up is a commercial system (Match Pro CPM-

1000, Comdel, Inc.) comprised of a tuning unit and a control unit. The tuning unit 

contains the matching components (variable capacitors and inductors), two dc motor 

servos, and rf sensors to provide feedback to the dc motor servos. The control unit 

provides controls for manual and remote operation of the tuning unit. 

2.3.2 Faraday Shield 

In this set-up, the influence of the capacitive coupling is reduced by introducing a 

Faraday shield between the antenna and the quartz plate. The capacitive coupling present 

from the stray capacitance of the high powered antenna can be reduced to a minimum 

depending on the design of the shield. Figure 2.5 shows the induction coil and the 
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Faraday shield as viewed from the vacuum side of the quartz plate. The spoked Faraday 

shield is grounded by connecting the Faraday filter founding strap to the bottom of the 

matching network. 

 

Figure 2.5 Schematic Diagram of the Faraday shield and rf coil [21]. 
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Chapter 3  

Theoretical Background of Langmuir Probe 
Measurement 

3.1 Principles of Langmuir Probe 

Langmuir probe is widely used as basic diagnostics for characterization of low 

temperature plasmas that allow insertion of a small metal electrode (probe). The probe is 

biased and the current in the circuit is monitored as a function of the bias voltage. From 

the current-voltage ( I V− ) curve, the electron energy distribution function, electron 

temperature (if the energy distribution is Maxwellian), plasma space potential, and the 

floating potential can be deduced. In this section, the principle of the Langmuir probe is 

reviewed.  

3.1.1 Sheath Formation in a Low Temperature Plasma 

In the surface region of a vacuum chamber in which an rf plasma is produced, the 

plasma particles are lost to the chamber wall but the rf field replenish them and a charge 

neutral plasma is maintained. Electrons and ions must be lost to the chamber wall at the 

same rate to maintain charge neutrality (ambipolarity). Since the electron thermal speed 

is much higher than the ion thermal speed, electrons must be decelerated while ions must 

be accelerated towards the wall so that the fluxes of both species are the same,  

,i i e en v n v=                                                              (3.1) 
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where  is the ion (electron) density and  is the ion (electron) average flow 

velocity. Sheaths, which are positive space charge regions, develop in front of the walls 

to maintain the aforementioned ambipolarity. A characteristic length related to the sheath 

is the Debye length, which is given by

( )i en ( )i ev

2
0 0/D ekT n eλ ε=  [44]. The sheath thickness is 

therefore of the order of the Debye length. Without a sheath, a plasma would be rapidly 

lost to the wall due to the lack of the electrostatic confinement. 

The same sheath formation occurs when a Langmuir probe is inserted into a 

plasma. The Debye length is usually very short. For example, if = 1 eV, = meT en 1710 3− , 

the Debye length is about 20 μ m. Therefore, in most practical cases, probe size far 

exceeds the Debye length which is the basic criterion for a conducting object to function 

as a Langmuir probe. 

3.1.2 Mean Free Path  

A general requirement for the application of Langmuir probe and the validity of 

Druyvesteyn formula is collisionless electron motion about the probe which requires that 

both the Debye length and probe diameter are much shorter than the electron mean free 

path. The mean free path of a particle in a medium is a measure of its probability of 

undergoing interactions of a given kind and is defined as the average distance that a 

particle (usually a molecule or atom) moves without colliding with something else. The 

mean free path for a particle with velocity , moving through background particles with 

density  is related to the cross-section corresponding to this type of interaction by the 

formula 

12v

2n

1
12

2 12 12

,
v

n v
λ

σ
=                                                        (3.2) 
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12v -relative velocity of particle 1 with respect to particle 2 

12σ –collision cross section between species 1 and 2 

12 12vσ< >  is the cross-section averaged over the velocity distribution,  also called the 

collision rate .  12k

In a plasma, the collisional processes that are the most likely to occur are elastic 

electron-neutral collisions, ion-neutral collisions and neutral-neutral collisions. The 

electron-neutral mean free path is taken as 

1 ,en
g enN

λ
σ

=                                                        (3.3) 

                                                      ,g
g

PN
kT

=                                                           (3.4) 

gN -density of neutral particles in the plasma in m 3−  

P -gas pressure in Pa 

gT -temperature of neutral gas in K 

enσ -momentum transfer cross section for electron-neutral collisions 

For hard-sphere collisions model 

2
12 ,en aσ π=                                                        (3.5) 

12a -the distance between the center of masses of the two collision particles 

For electron-neutral collisions, the electron radius is negligible in comparison with that of 

the atomic radius so that . 12 atoma a≈

The electron-neutral collision mean free paths of argon plasma were calculated for 

a neutral gas having a temperature of 300 K according to Eq. (3.3) and the results are 

shown in Table 3.1. 

 19



P (mTorr) 1 10 50 500 1000 

gN (m ) 3− 3.216×1019 3.216×1020 1.608×1021 1.608×1022 3.216×1022

 (cm) enλ 194 19.4 3.88 0.388 0.194 

Table 3.1 Electron-neutral collision mean free path of Ar plasma at different gas 
pressure. The neutral gas temperature is assumed to be 300K. 

From the data in Table 3.1, it can be seen that the electron mean free path is 

always larger than the largest probe radius that was used in ours experiment (0.375 mm). 

Actually, from the neutral gas temperature measurement by using OES, it is found that 

the gas temperature is always higher than 300 K, in the order of 1000 K. This may give a 

larger electron mean free path than the results calculated by assuming a neutral gas 

temperature of 300 K. So it is reasonable to use the collisionless sheath theory. 

3.1.3 Langmuir Probe Current in a Plasma with Maxwellian Distribution 

If the electron velocity distribution function is Maxwellian, a simple relationship 

between the Langmuir probe current and the bias voltage emerges. Let us consider a 

planar probe biased at a potential 0V <  relative to the plasma potential which is chosen 

to be 0. Since only those electrons having a velocity satisfying  

21 ,
2

mv e V>                                                         (3.6) 

can be collected, the electron current is found to be  

2

0 0exp exp ,   0,
2 2c

e iov
e e e

m mv eVI Sen v dv I I V
T T Tπ

∞ ⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ <                   (3.7) 

where S is the probe surface area, and  is the critical velocity given by  cv

2 | |.c
e Vv
m

=                                                       (3.8) 
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The electron saturation current is given by 

0 0 ,
2

e
e

TI Sen
mπ

=                                                     (3.9) 

and the ion saturation current, which is governed by the sheath, is given by 

0 0 00.605 .
e

e
i

TI Sen Sen eT
M M

= =                                    (3.10) 

 (Note that the Bohm criterion requires that the ion velocity entering the sheath to be of 

the order of the ion acoustic speed. In Eq. (3.10), e is the electronic charge and e = 

2.718 .) For a large negative probe potential, all the electrons are repelled and the ions 

collected. The collected current is ioI I= . The electron temperature can be obtained by 

taking the logarithm of the probe current, which can be represented by a straight line with 

the slope being proportional to1 . / eT

For a potential above the plasma potential ( ), all electrons are collected and 

the probe current becomes constant 

0V >

0.eI I=  The probe current vanishes at a potential 

fV V= , with  the floating potential. fV

 

Figure 3.1 The Langmuir probe current as a function of the probe voltage. 
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3.1.4 Non-Maxwellian Probe Current 

When the electron velocity distribution is not Maxwellian but still isotropic, and 

the mean free path mfpλ  of electrons is large compared to the probe dimensions, the 

Langmuir probe still applies and the probe current can be calculated as follows [45]. We 

assume that the probe collects electrons having a velocity component cos ,zv v θ= where 

 is the magnitude of the velocity and v θ  is the angle between the normal of the probe 

surface and the velocity of the collected electrons. Since the distribution function is 

isotropic by assumption, the current density becomes 

3( )eI eS f d= ⋅∫ v v n v  

2( , , ) cos( )sin( )eS f v v v dvd dθ ϕ θ θ θ= ∫                                  ϕ

) ,

 

max

min

3

0
2 ( )cos( )sin(

v
eS v f v dvd

θ
π θ θ

∞
= ∫ ∫ θ                                  (3.11) 

( )f vwhere v is the velocity vector, v = |v| is the magnitude, and  is the electron velocity 

distribution function. Here, the minimum velocity of the electrons collected by the probe 

is  

( )min
2 ,p b

ev V
m

= −V                                                 (3.12) 

and 

1 min
max cos .v

v
θ − ⎛= ⎜

⎝ ⎠
⎞
⎟                                                 (3.13) 

21
2

mvε =For an isotropic distribution, the distribution function is a function of energy , 

and thus 
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2
3

24 ( ) 4 ( ) ( ) ,e En v f v dv f d f
m

dπ π ε ε ε ε= = =∫ ∫ ∫ ε                      (3.14) 

where ( )Ef ε  is the electron energy distribution function (EEDF) given by 

( ) ( )3

24Ef
m

.fε π ε= ε                                                (3.15) 

( )f ε  is called the electron energy probability function (EEPF).  

Integration of Eq. (3.11) over θ  results in  

min

3
2

2 ( )
( )(1 )p b

e v

e V V
I eS v f v dv

mv
π

∞ −
= −∫       

2 ( )

2 ( )( ( )) .
p b

p be V V

eS f e V V d
m
π ε ε

∞

−
= −∫         ε−

b

                              (3.16) 

2

2 eSA
m
π

=If we define  and pV V V= −  

eIThe first derivative of   with respect to V  yields  
1 [ ( )( )]e

eV

dI f eV d
Ae dV e V

ε ε ε
∞ ∂

= −
∂∫        

                              
                                                                                              (3.17) .)(∫

∞
−=

eV
df εε

The second derivative of  with respect to V yields the Druyvesteyn formula which 

provides a measure of evaluating the EEDF. 

eI

2
2 2

2 ( ) ( )ed I Ae f eV Ae f
dV

.ε= =                                             (3.18) 

Therefore, the relationship between the second order derivatives of the Current-Voltage 

(I-V) curve and EEDF can be established: 

2

2
ed I

dV
( )( ) .Ef fε ε

ε
∝ ∝                                                        (3.19) 

Equation (3.18) is applicable to an arbitrary distribution function as long as it is isotropic.  
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3.2 Measurement Method 

A number of methods have been developed for obtaining differentiated probe 

characteristics [46]. The simplest method involves graphical differentiation of the 

characteristic in the electron-retarding region. It is, however, subject to considerable 

error.  

As an alternative, the coupling of accurate phase sensitive detection and digital 

data acquisition and analysis, with the harmonic differentiation technique may prove 

useful under certain plasma environments where active differentiation is untenable. The 

phase sensitive detection has been used for the acquisition of the second derivative of the 

I-V characteristic [39, 40]. The method is based on superimposing a small ac potential on 

the dc probe bias, and then utilizing the nonlinearity of the probe current-voltage 

characteristics to obtain derivative information related to the harmonic distortion of the ac 

signal. When a small ac signal with a frequency ω  is added to the dc probe bias,  

0
0( ) sin( ),b bV t V v tω= +                                                    (3.20) 

                                                0
0 ,bv V

where  is the dc probe bias voltage and  is the ac probe bias amplitude.  0
bV 0v

The corresponding probe current density J as a function of probe bias can be 

expressed in terms of a Taylor series about , 0
bV

0
0( sin( ))bJ V v tω+ =

2
0 0 2 00

0( ) sin( ) '( ) sin ( ) "( )
2b b b

vJ V v t J V t J Vω ω+ + +                (3.21) 

Expand sine terms 

2 4 6
0 0 0 00 0 0( ) "( ) ( ) ( )

4 64 2304
iv vi

b b b b
v v vJ J V J V J V J V= + + + +                             

 24



3 5
0 0 00 0

0[ '( ) '"( ) ( ) ]sin(
8 192

iv
b b b

v vv J V J V J V t             + )ω+ + +      

2 4 6
0 0 00 0 0[ "( ) ( ) ( ) ]cos(2 )

4 48 1536
iv vi

b b b
v v vJ V J V J V tω− + + + +             (3.22) 

2
00 ''( ) cos(2 )

4 b
v J V tωThe leading term of the second harmonic is  and we get 

2
2 2

0 2

1 cos(2 ).
4

e

b

d JJ v
dV

ω tω≈                                                 (3.23) 

Equation (3.23) expresses the generalized relation between the detected amplitude 

of the second harmonic signal and the second derivative of the prove I-V curve, which is 

connected to the EEDF through Eq. (3.19). In the experiment, the plasma potential  is 

assumed constant and 

pV

εdedVedV b ==  according to Eq. (3.12). When  is scanned 

slowly, a complete EEPF curve can be obtained. 

bV

3.3  Maxwellian and Druyvesteyn Distribution 

The electron energy distribution function in low pressure discharges may often be 

approximated by either Maxwellian or Druyvesteyn distribution. Physically, Maxwellian 

distribution function is realized when the electron collision frequency is velocity 

independent, while Druyvesteyn distribution prevails when the mean free path is velocity 

independent. To appreciate the qualitative difference between Maxwellian and 

Druyvesteyn distribution functions, the EEPFs of both types are shown in Fig. 3.2 with 

common average electron energy of 2.5 eV. The probability functions are normalized 

with the area under the curves being 1. The respective electron energy probability 

functions are given by  
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1.5( ) 0.52442 exp .Mf
εε ε

ε
⎛ ⎞−

= ⎜⎜
⎝ ⎠

Maxwellian EEDF: ⎟⎟                                                (3.24) 

2( ) 0.2642 exp 0.55( ) .Df
εε ε
ε

⎛ ⎞
= −⎜⎜

⎝ ⎠
Druyvesteyn EEDF: ⎟⎟                                        (3.25) 

For Maxwellian distribution, the average energy and temperature are well defined as 

3 .
2 eTε =                                                      (3.26) 

 

Figure 3.2 Druyvesteyn and Maxwellian electron energy probability function with the 
same average electron energy of 2.5 eV. 

In comparison with Maxwellian distribution, Druveysteyn distribution is 

characterized by depletion in the high energy region and a shift of the maximum towards 

a higher energy. 
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3.4 Probe Circuit Used in Experiment 

Two radially movable Langmuir probes made of tungsten have been used to 

measure the plasma parameters along a radius of the plasma. One of the probe tip used is 

a tungsten wire of radius 0.325 mm and length 2.2 mm covered by an alumina ceramic 

tube. The alumina tube is mounted on a stainless steel tube inserted in the chamber using 

a movable Wilson vacuum seal. Another probe used to measure the probe I-V curve has a 

similar structure as the first one. The only difference is with a probe tip of 0.25 mm 

radius. The construction of the probe is shown in Fig. 3.3. 

 

Figure 3.3 The Langmuir probe and support. 

The Langmuir probe measuring circuit is shown in Fig.3.3. A saw-tooth wave 

with a frequency around 1 Hz was fed into the bipolar operational power amplifier 

(Kepco) from a 3010 function generator (Dynascan Corporation) before going to the 

probe and was recorded by an analog to digital converter (ADC) IBM data acquisition 

card with a resolution of 12 bits and stored by a computer. The sinusoidal wave generator 

provided a 50 KHz ac signal with an amplitude of 1 V. But the signal coupled, through 

the transformer, to the probe tip was below 50 mV. The signal was processed by a 

frequency doubler. A lock-in amplifier was used to filter the noise and measure the 
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magnitude of the 2ω  component corresponding to the 2  derivatives of the probe 

current, which was also recorded by the digital card and computer. The information on 

the Current-Voltage curve of the probe was obtained by measuring the voltage drop over 

the resistor.  

nd

Plasma 

 

Figure 3.4 Probe circuit used in the experiment for EEDF measurement. 

Lock-in Amplifier 
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Chapter 4  

Results of Electron Energy Probability Function 
measurements  

4.1 EEPF in Argon Discharges 

4.1.1 Results of EEPF Measurements in Argon ICP 

Measurements reported in this section were made in argon discharge with 

pressures varying from 1 to 900 mTorr and the discharge powers in the range of 100-600 

W. The probe is at the position of 2.3r = 28.7z = cm, and cm from the bottom of the 

chamber. No account is taken of the ion current since the contribution of the ion flux to 

the total current is negligible [19, 20]. The probe is cleaned by applying a high positive 

voltage until it glows red before each scan. 

The effect of gas pressure on EEPF at 100 W rf power is shown in Fig. 4.1. The 

EEPF at 1 mTorr is close to a Maxwellian distribution below 11.6 eV, which is the first 

excitation energy of argon. The high energy tail is depleted compared with the low 

energy part and this can be seen clearly from Fig. 4.2. The EEPF can be described as a 

two-temperature distribution with the electron temperatures of  and , which are 

defined as 

1eT 2eT

1
(ln( ( )) /d f dε ε

− . When the pressure reaches 10 mTorr or above, the EEPF 
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becomes more Druyvesteyn like than Maxwellian since the logarithm of EEPF is 

approximately proportional to 2ε  as shown in Fig. 4.3.   

 

2.3r =  cm,  cm. 28.7z =Figure 4.1 Evolution of EEPFs with gas pressure at 100 W, 
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Figure 4.2 ln(EEPF)  at 1 mTorr, 100 W. Example of two-temperature Maxwellian 
distribution.  

 
2εFigure 4.3 ln(EEPF) vs.  at 10 mTorr 100 W. Example of Druyvesteyn distribution 

function. 

1
2εThe EEPFs have also been multiplied by  to get the EEDF and then fitted with 

function in the form
1

2 exp[ ( / ) ]rA Bε ε− , where , A B  and are fitting parameters. The r

 31



Maxwellian electron energy distribution corresponds to 1r =  and the Druyvesteyn 

distribution corresponds to 2r = . The results are shown in Fig. 4.4 in term of the 

logarithm of gas pressure. It is seen that the power r  increases with the pressure from 1.3 

at 1 mTorr to 2.2 at 10 mTorr or above implying which implies that the EEDF becomes 

more Druyvesteyn like as the pressure is increased. This result is consistent with that 

shown in Fig. 4.1-4.3. At a fixed pressure of 1 mTorr, the parameter  increases with the 

discharge power as well, which also implies a transition to Druyvesteyn distribution. All 

the results shown in Fig. 4.4 were averaged over three different sets of data acquired 

under the same discharge condition. The experimental errors are estimated to be around 

15% by calculating

r

rrr )( − r, where  is the average of the fitting power. 

 

Figure 4.4 Fitting power r  vs log(Pressure/mTorr) at different discharge power. 
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One of the possible reasons for the departure from a Maxwellian distribution at 1 

mTorr is the localization of power deposition in ICP and the insufficient electron-electron 

collisions due to the low electron density in low-pressure plasmas. In ICP, most of the 

power deposition occurs at the place where the inductive electric field is high. This field 

is not distributed over the whole plasma but has a ring shape, centered on the chamber 

axis [47]. As a result, different energy groups are formed as electrons that pass through 

the high electric field region can obtain energy while electrons in other low electric field 

region can not get this energy [48]. Another factor that may affect the high energy 

electron depletion might be the rapid loss of high energy electrons through diffusion to 

the wall and recombination at the wall [49].  

Druyvesteyn distribution is typical for the argon plasma in dc or low-frequency 

fields with negligible electron-electron collisions [50, 51]. In the high electron density 

inductively coupled plasma, this deviation from a Maxwellian and approach to 

Druyvesteyn distribution at higher gas pressures can be attributed to the ohmic heating or 

collisional heating that dominates the formation of EEPF at a high pressure. This can be 

seen from the electron energy diffusion coefficient Dε , which contains all the information 

about the electron heating process. The EEPF formation is determined by en Dε [52]. In an 

inductively coupled plasma, Dε takes the form of  

2
22

2 1
,

( ) ,
2

n
m mn

m ne

eD J E
mε ,q vε να
ω ω ω

⎛= Θ⎜
⎝ ⎠

∑ ⎞
⎟                                  (4.1) 

where  is the m-th zero of the first order Bessel function, is the Fourier-Bessel 

component of the inductive field, 

1ma mnE

ω is the rf frequency and ,nq v ν
ω ω

⎛Θ⎜
⎝ ⎠

⎞
⎟  represents the 
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interaction between an electron with thermal velocity v  and the electric field 

component  [15].  mnE

en DεThe quantity in the low energy region of less than 10 eV increases with the 

pressure. In the high pressure regime where the electron neutral collision frequency is 

higher than the rf frequency, ,nq v ν ω
ω ω ν

⎛ ⎞Θ ≈⎜ ⎟
⎝ ⎠

,  and D is proportional to 1
νε . Thus the 

energy transfer is strongly dependent on the variation of the momentum transfer cross 

section. Due to the Ramseur effect in the collisions between neutrals and electrons, low-

energy electrons can be effectively heated by the electric field. Furthermore, the low 

energy electrons can interact with the electric field with longer time and more efficiently 

obtain energy from the rf electric field. As a result, the transition to Druyvesteyn 

distribution occurs due to the heating of the low energy electrons. The transition to the 

Druyvesteyn distribution is expected to occur at the condition where 1ω
ν

 [15]. The 

comparison between the rf frequency and  ν  calculated from the measured plasma 

parameters is presented in Fig. 4.5 It serves to show that, the momentum transfer 

frequency of argon plasma is smaller than the rf frequency at 1 mTorr. As the pressure 

rises to 10 mTorr or above, 1ω
ν
< . The transition of the EEPF to a Druyvesteyn 

distribution is thus expected to occur at this pressure. 
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Figure 4.5 Comparison between the momentum transfer and rf frequency. 

The approach to a Druyvesteyn distribution of the EEPF at higher gas pressure 

has also been observed by Gudmundsson et al. [13] in an oxygen/argon planar inductive 

discharge and by Michael S. Barnes et al. [14] in a planar inductive oxygen rf glow 

discharge, in which the distribution functions ranging from Maxwellian at 0.5 mTorr to 

almost Druyvesteyn-like at 10 mTorr were reported.  

In this study, the EEPF is also found to shift to Druyvesteyn distribution with 

increasing rf power. This phenomenon might be caused by the large probe circuit 

resistance which tends to distort the EEPF especially when the probe circuit resistance is 

larger than or comparable to the probe sheath differential resistance, 

1
0( / ) ( / ) /b e eR dI dV kT e I−= ≈ , which becomes smaller when the electron saturation 
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current is large. In order to solve this problem, a special probe circuit with a small 

resistance needs to be designed. 

4.1.2 Radial Dependence of EEPFs in Argon Discharges 

Figure 4.6 depicts the radial dependence of the measured EEPF taken 

at cm and selected r values varying from 2.3 to 10.2 cm, under the discharge 

condition of 1 mTorr pressure and 100 W rf power. The average electron energy taken at 

different radial position has been evaluated and it varies by 4% at 1 mTorr as shown in 

Table 4.1, The small variation of the average electron energy indicates that the radial 

dependence of the EEPF is weak. But, when the pressure reaches 50 mTorr, the radial 

variation of 

28.7z =

ε  becomes up to 14.5% and the assumption of the spatial independence of 

EEPF may not be valid at the high pressures. The significant variation of the ε  can be 

seen from Table 4.2. 

  100W 200W 300W 400W 

r=2.3cm 4.40eV 4.87eV 5.56eV 6.35eV 

r=4.8cm 4.29eV 4.83eV 5.49eV 5.93eV 

r=7.4cm 4.60eV 4.80eV 5.73eV 5.87eV 

r=10.2cm 4.45eV 4.63eV 5.40eV 5.89eV 

ε 4.44eV 4.78eV 5.55eV 6.01eV ave

δ 3.60% 3.10% 3.20% 4.00% max

Table 4.1 Radial variation of the average electron energy, its radial average and 
maximum deviation δ  at 1 mTorr.  max
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 100W 200W 300W 400W 

r=2.3cm 2.19eV 1.95eV 1.87eV 1.83eV 

r=4.8cm 2.11eV 1.95eV 1.94eV 1.80eV 

r=7.4cm 2.07eV 1.67eV 1.73eV 1.67eV 

r=10.2cm 1.83eV 1.53eV 1.59eV 1.53eV 

ε 2.05eV 1.79eV 1.78eV 1.71eV ave

δ 10.70% 14.50% 10.70% 10.50% max

Table 4.2 Same as Table 4.1 at 50 mTorr. 

The spatial independence at a low pressure may be attributed to the non-local 

property of the electrons in a plasma. In low pressure gas discharges, the electrons diffuse 

over a long distance before their energy changes because the inelastic collisions occur at 

a rather low frequency. The large electron mean free path and low frequency inelastic 

collisions give rise to so-called non-local effect influencing the EEPF. The spatially 

homogenous EEPF and the applicability of non-local theory in an argon ICP discharge 

have been verified by Kortshagen et al. [22]. Similar result has also been reported by 

Singh et al. [24] and Mumken [53]. These authors have revealed that the applicability of 

non-local property became invalid with the increasing gas pressure. Mahoney et al [21] 

revealed that there was significant spatial variation in the form of the EEDFs at 10 mTorr 

and this variation became insignificant when the pressure reaches 50 mTorr. 

In this study, it has been found that the validity of non-local behavior holds when 

the pressure is lower than 10 mTorr. 
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Figure 4.6 Radial variation of EEPFs at 1 mTorr 100 W. 

4.2 Nitrogen and Hydrogen Discharges 

EEPFs in nitrogen and hydrogen discharges have been found to be neither 

Maxwellian nor Druyvesteyn under the discharge conditions investigated. Figures 4.7 and 

4.8 show the effect of discharge power on EEPF in a nitrogen discharge at 5 mTorr and 

100 mTorr working pressure respectively. An extra peak in the EEPF is observed under 

all the discharge conditions that have been investigated.  
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Figure 4.7 EEPFs in nitrogen plasma at 5 mTorr and different discharge powers. 

 

Figure 4.8 EEPFs in nitrogen plasma at 100 mTorr and different discharge powers. 
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The position of the second peak varies for different discharge conditions and 

ranges from around 3.5 eV at 3 mTorr to 24.0 eV when the pressure reaches 100 mTorr. 

Generally, it shifts to higher energies with the rise of working pressure whereas to lower 

energies when the discharge power is increased. The effect of discharge power becomes 

more significant when the gas pressure reaches 50 mTorr and higher.  

The effect of gas pressure between 5-50 mTorr over the discharge power range of 

100-600 W has also been investigated in the hydrogen discharge. No other data beyond 

this range has been acquired due to the limit of the device. The measured EEPF in 

hydrogen plasma has a structure similar to that in the nitrogen plasma and there are two 

peaks in the EEPF under most of the discharge conditions. The amplitude of the first peak 

decreases as the discharge power increases. The position of the second peak moves to the 

low energy direction when the discharge power is increased but to the high-energy 

direction when the gas pressure is raised.  

This result is quite different from what has been reported by Singh et al. [24], who 

demonstrated that the molecular gases exhibit a nearly Maxwellian distribution at low 

pressures (between 10 and 30 mTorr) while the EEDF of the argon plasma is non-

Maxwellian in this range by using a tuned, cylindrical Langmuir probe. At pressures 

above 30 mTorr, the electron energy distribution shows deviation from a Maxwellian 

distribution. It has also been pointed out that, in the nitrogen discharge, a hole in the 

EEPF is observed around 3 eV due to the presence of resonant electron-molecule 

vibrational excitation cross sections at 100 mTorr and the hole vanishes with increasing 

argon dilution [24].  
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For the results presented in this work, there are always two peaks in the measured 

EEPF under all the discharge conditions investigated. This phenomenon is more obvious 

at a high pressure but low discharge power because under these conditions, the local 

electric field ( ,  is the neutral number density) that sustains the discharge might 

be small and the super-elastic collisions (a collision in which the translational energy of 

the fast-moving collision particle is increased) play an important role in the formation of 

the EEPF. In the ICP, the possible super-elastic collisions include the collisions between 

electrons and electronically or vibrationally excited molecules. As a result, super-elastic 

collisions involving vibrationally excited molecules are able to thermalize the EEPF at 

the vibrational temperature of the molecules, whereas the collisions involving 

electronically excited state produce a highly structured EEPF due to the heating of cold 

electrons by the excited states [54-56]. The energy gained by the electrons through 

collisions with the vibrational or electronically excited states may produce an extra peak 

in the EEPF as a result of the following reaction 

/E N N

* *'( ) ( )e A A eε ε ε+ → + +Δ                                           (4.2) 

4.3 EEPF Measurement in Helium Discharges 

In order to investigate whether the phenomenon of the extra peak in EEPFs of 

hydrogen and nitrogen plasmas is peculiar to the molecular gas or not, the EEPF 

measurement in the helium discharge was carried out. It is difficult to start a discharge in 

helium gas compared to the case of the argon because of the much higher ionization 

threshold energy of the helium gas. As the gas pressure decreases, it requires much more 

rf power to sustain the discharge and the minimum gas pressure for plasma production is 

found to be around 10 mTorr in this device. 
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The effect of gas pressure on EEPF at 200 W in the helium plasma is shown in 

Fig. 4.9. The EEPFs in Fig. 4.9 show a transition from Maxwellian to Druyvesteyn 

distribution as the pressure is increased. The transition is characterized by the depletion 

of the high energy electrons in the distribution as pressure increases. Regarding the rf 

power, there is a shift from Maxwellian to Druyvesteyn distribution at 20 mTorr when 

the rf power is increased from 200 to 300 W. 

 

Figure 4.9 EEPFs in helium discharges at fixed rf power of 200 W and different 
pressures. 

In conclusion, the EEPF of helium discharge also distinguishes from that of the 

nitrogen and hydrogen significantly. No extra peak was found in the helium EEPF. 

Comparisons between argon EEDF and helium EEDF in a capacitively coupled plasma 

source has been made in reference [40]. It is reported that in the measured gas pressure 
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range in helium discharges, most electrons in the body of the EEDF have a Maxwellian 

distribution and  falls with the increasing gas pressure. While in the argon plasma, 

there is a transition from Maxwellian to Druyvesteyn distribution. The difference was 

explained by the heating mode transition from stochastic heating to collisional heating in 

argon plasma. In this work, the EEPF in an inductively coupled plasma is found to show 

the transition to Druyvesteyn-like distribution as the pressure is increased in both the 

helium and argon discharges. It is believed that the colisional heating must also play an 

important role in the formation of the Druyvesteyn distribution in helium discharge. 

effT

4.4 Average Electron Energy and Density Measurements 

4.4.1 Argon Plasma 

Measurements of average electron energy ε  and plasma density were made in 

the argon discharge for pressures from 1 mTorr to 1 Torr and input rf powers from 100 to 

600 W. The average electron energy was calculated by  

( )
11.5 ,

ln /d f d
ε

ε ε
= −                                             (4.3) 

for Maxwellian EEPF, and for Druyvesteyn EEPF, 

2

10.55 .
ln ( ) / ( )d f d

ε
ε ε

= −                                           (4.4)  

The electron densities were calculated by either by Eq. (3.18) (Maxwellian distribution) 

or * 1
2 0.45

e
e e

mn I
Seε

=
< >

 (Druyvesteyn distribution) depending on the calculated 

average electron energy [57].  

The variation of average electron energy with pressure and rf power is shown in 

Fig. 4.10. There seems to be no strong dependence of  on the input rf power except at ε
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a low gas pressure of 1 and 10 mTorr. It can be seen, however, that ε  decreases sharply 

for pressures lower than 50 mTorr.  

The plasma density is found to be in the range of - cm . Figure 4.11 

shows the dependences of electron density on gas pressure and discharge power. The 

density increases initially with increasing pressure. The density, however, peaks at 

P 200-300 mTorr and then decreases with the further increase of the pressure. The 

discharge power also has a significant effect on the plasma density. Generally, a higher 

discharge power leads to a higher electron density. At a high discharge power, the plasma 

density increases by more than two orders of magnitude as the gas pressure increases 

from 1 to 300 mTorr. From Fig. 4.12, it can be seen that there is a jump in the density 

when the gas pressure rises from 10 to 50 mTorr. The densities increase linearly with the 

logarithm of the gas pressure when the pressure is between 10 and 300 mTorr and the 

effect of the power on the density is more significant at a high gas pressure but becomes 

insignificant at 1 mTorr. 

1010 1210 3−

≈

 

Figure 4.10  as a function of the pressure at different discharge powers. ε
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Figure 4.11 -Pressure/mTorr at different discharge powers. en

 

Figure 4.12  vs. log(Pressure/mTorr) at different discharge powers. en
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The dependence of the average electron energy ε  on gas pressure and rf power 

can be explained by the particle balance equation at the steady state due to the linear 

relationship between the effective electron temperature and  [3] ε

( ) 1
( )

iz e

B e eff

K T
u T Nd

=                                                   (4.5) 

1
2eff

L R

RLd
Rh Lh

=
+

where  is the effective plasma size, R  and  are the plasma source 

radius and length respectively,  and  are the edge to center density rations,  is 

the Bohm velocity,  is the ionization reaction rate which can be approximated to 

be of Arrhenius type, , and  is the density of gas.  

L

lh Rh ( )B eu T

( )iz eK T

0 exp( / )iz iz iz eK K E T= − N

1
2( ) ( / )B e e iu T kT m=Since , the ionization reaction rate increases more rapidly than 

, the left side of Eq. (4.5) increases with an increase of the electron temperature, 

namely, the average electron energy. When the pressure is increased, the right side of Eq. 

(4.3) decreases and this implies a decrease of the electron temperature. It is also noted 

that,  is independent of input power. The main cause of the increase in 

Bu

eT ε  with the 

increasing rf power at a low gas pressure is heating of the gas and the resulting decrease 

in the neutral number density [58].  

The plasma density can be estimated from [3] 

abs
e

B eff L

Pn
eu A ε

=                                                        (4.4) 

where 2 (eff L R )A R Rh Lhπ= + is the effective area for particle loss, L c e iε ε ε ε= + +  is the 

total energy lost per ion from the system which contains collisional energy loss per ion-
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cεelectron pair ( ), and the energy transferred from the plasma to the chamber wall by 

ions ( iε eε)  and electrons ( ). Both iε eε and  increase with the average electron energy. 

The collisional energy cε  increases rapidly with increasing pressure in the high pressure 

regime as we can see from Fig. 4.13. 

 

Figure 4.13 Collision energy loss per electron-ion pair created, cε  vs  in argon and 
oxygen (Compiled by Gudmunsson, 2002 [3]). 

eT

In the low pressure range, the plasma density is dominated by the change in the 

diffusion energy loss, , and Bu effA . As a result, the plasma density increases when the gas 

pressure increases. In the high pressure range, the plasma density is dominated by the 

collisional energy loss and thus decreases as pressure is increased.  

In this work, the electron density  depends on both pressure and input power 

and is peaked around 300 mTorr at a given rf power. The trends of the average electron 

energy and density on discharge power and pressure are similar to the normal trends 

observed in inductive discharge as reported in [59, 60]. The higher rate of inelastic 

en
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electron heavy particle collisions leads to the decrease of the ε  with increasing 

pressure while the trend of  with increasing pressure is consistent with the power 

balance relation [60]. 

en

4.4.2 Helium Plasma 

Figure 4.14 shows the calculated average electron energy in helium discharge as a 

function of gas pressure at rf powers of 200-600 W. The maximum average electron 

energy is as high as 10.0 eV under the discharge condition of 10 mTorr, 600 W. The 

average electron energy decreases as the working pressure increases due to the energy 

transfer from high-energy electrons to the neutrals. The dependence of the ε  on rf 

power is insignificant. When compared with the argon discharge, usually, the average 

electron energy in helium discharge is higher than that of the argon discharge under the 

same discharge condition. This is reasonable because the ionization energy  of helium 

is larger than the

iE

iE of argon [59]. 

 

 vs. pressure/mTorr at different discharge powers in helium plasma. Figure 4.14 ε
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Chapter 5  

Measurements of Neutral Temperatures in ICP  

5.1 Introduction 

It is generally assumed that in plasmas for materials processing, the neutrals are 

assumed to be at the room temperature. Nevertheless, the recent work on the neutral gas 

temperature measurement and modeling in the ICPs [25-36, 61-64] and some other 

devices [65, 66] has indicated that heating of neutral species is significant and gas 

temperatures in ICPs may exceed by a large margin the room temperature [25, 26].  

Several methods have been developed to measure the neutral gas temperatures in 

ICPs.  Hebner [29] used laser-induced fluorescence (LIF) in an Ar ICP and found that the 

neutral gas temperature reached 1000 K. Hebner and Miller [30] also measured radial 

distribution of the temperature of excited argon atoms Ar* in the same system.  

Temperatures in the range of 600-700 K were found in C F3 6 inductively produced plasma 

at a pressure of 10 mTorr and an rf power of 200 W [31]. Singh et al. [32] used the ideal 

gas law to determine the gas temperatures from the total neutral gas density and deduced 

neutral temperatures in the range of 450-930 K.  Abada et al. [33] measured the spatially 

and temporally resolved neutral gas temperature in a CF4 planar inductive discharge 

using LIF and observed strong temperature gradients. The highest temperature reached 

900 K in the reactor centre at a pressure of 50 mTorr and a power density of 0.15 W/cm3. 
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The temperature increases with both gas pressure and power, but is independent of gas 

flow rate. Bol’shakov et al. [34] measured the gas temperature in ICPs by emission and 

diode laser absorption and observed a high temperature of 1285 K at 300 W in the 

pressure range of 300 mTorr. Gas temperatures on the order of 1400 K in a Cl /BCl2 3/ N2 

plasma at 1000 W rf power was reported by Donnelly and Malyshev [35]. In a plasma 

abatement device operated at 1200 W, temperatures as high as 2100 K were also reported 

[36]. The gas temperature as a function of gas pressure was also reported by Tonnis and 

Graves [26]. It has been found that the gas temperature is almost proportional to the 

logarithm of gas pressure. An increase in gas temperature with rf power was also found, 

but the dependence cannot be expressed by a simple analytical expression. Comparisons 

between molecular gas and atomic gas have also been made. It has been reported [26] 

that the molecular gas usually exhibits higher temperature under the same discharge 

condition compared with that of the atomic gases. The higher temperature of molecular 

gases may be attributed to Franck-Condon heating of neutral fragments during electron 

impact dissociation, vibrational excitation/thermalization, and exothermic wall reactions 

inside the molecular plasmas. 

In this Chapter, results of neutral gas temperature measurements in a planar 

inductively coupled plasma based on optical emission spectroscopy previously proposed 

by Donnelly and Malyshev [25] will be presented. Both nitrogen and argon plasmas were 

studied. 5% nitrogen was added as an actinometer in the case of argon discharge.   

5.2 Theoretical Description of Molecular Transition  

Emission from molecules involves electronic ( ), vibrational ( ), and rotational 

( ) energy level transitions. For a diatomic molecule that the effect of electron spin 

n v

J
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splitting and Λ doubling can be neglected, the total energy of the molecule can be 

expressed by     

e vE E E E                                         R= + +        

( ).e v Rhc k k k= + +                                               (5.1)                                              

where , ,  represent the electronic energy, vibrational energy and rotational 

energy respectively, while , ,  are the corresponding wave numbers.  can be 

obtained from most molecular spectroscopy handbooks.  is given by 

eE E REv

ek vk Rk ek

vk

2 31 1 1 1( ) ( ) ( )
2 2 2v e e e e ek v x v y v

c
ϖ ϖ ϖ⎡ ⎤= + − + + + +⎢ ⎥⎣ ⎦

,           (5.2)                         

where eϖ  is electronic state dependent vibrational frequency, ,  are constants, and  v 

is the vibrational quantum number (v=0,1,2, ). Based on a vibrating symmetric top 

model,  is calculated as follows 

ex ey

Rk

2 2( 1) ( 1)R v vk B J J D J J= + − + +                                        (5.3) 

where J is the rotational quantum number (J=0, 1, 2, ).  is the rotational constant, 

and  is the distortional constant. Both constants are electronic state and vibrational 

state dependent. 

vB

vD

'E "E   For a transition from an upper state  to a lower state , the total energy 

change is given by: 

.e vE E E ERΔ =Δ +Δ +Δ                                                  (5.4) 

   ,  and   correspond to the change of electric energy, vibrational energy 

and rotational energy, respectively. Expressed in the corresponding spectral terms, we 

can obtain the wavenumber of the transition 

eEΔ vEΔ REΔ

 51



                                  ' ' ' " " "( ) ( )e v R e v Rk k k k k k k= + + − + +

' " .e v v Rk k k= + +                                                                          (5.5) 

For a given system of band and vibrational state,  and  are both constants. So k  

can be expressed as 

ek ' "v vk

0 .Rk k k= +                                                               (5.6) 

' .R R Rk k k "= −                                                             (5.7) 

The selection rules for this transition are 

= ' " 1,0,1J JJΔ ,− = −                                               (5.8) 

except that =0 to =0 are forbidden. 'J "J

The method used in this study to measure the neutral temperature was developed 

by Donnelly and Malyshev [25] and involved injection of small percentage of nitrogen 

gas (5% in our case) into an experimental gas and examining the spectrum of a molecular 

band. The molecular band is due to rovibronic transition from the upper , =0, '  

state to the lower , =0,  state. Since does not change, 

uc ∏3 'v J

gB ∏3 v GΔ"v "J =0 can be assumed. 

The selection rules for - transition is 0,JΔ ='J "J  1± , while 0-0 transitions are not 

allowed. Thus the molecular band can be split into three branches, P, Q, and R, 

corresponding to  being -1, 0, and 1, respectively. The lines of the tree branches 

combine to form a violet-degraded peak at 337.1 nm and broaden to lower wavelengths. 

This observed spectrum can then be modeled with the equation 

JΔ

( ', ") ( ', ")exp( ( ') / ),rotI J J aS J J E J kT= −                                      (5.9) 

where the coefficient a  is a proportionality constant dependent on the spectrometer 

sensitivity, rotational partition function and other factors. is the line strength )",'( JJS
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( ')E Jfactor, which is approximated by 2 ' +1. J  is the rotational energy at level J '  , given 

by 

                                      (5.10) 2
' '( ') [ '( ' 1) ' ( ' 1) ],v vE J hc B J J D J J= + − + 2

where  is the rotational quantum number of the upper state. k  is the Boltzmann 

constant and  is the rotational temperature of the upper state C . 

'J

∏3
rotT u

In order to synthesize a theoretical emission spectrum, we have calculated the 

wavelength and intensity factors using known rotational constants proposed by Herzberg 

[67]. In addition, the Gaussian type instrumental broadening has to be incorporated into 

the theoretical emission line intensity given by Equation (5.9) [68-70]. First, a Gaussian 

profile of each rotational emission line is calculated based on the measured instrumental 

broadening. Then, the intensity of each line falling into the predefined regular wavelength 

(or energy) bin is integrated. Finally, the intensities of all lines in that wavelength bin are 

summed up to form a synthesized spectrum. To compare an observed spectrum and the 

synthetic spectrum, the proportionality constant a in Equation (5.9) was adjusted so that 

the areas under the observed and synthetic spectra are equal.  (Chi-square) has been 

calculated for varying  until a minimum  is found. The specific procedure is as 

follows: 

2χ

2χrotT

(1) Convolution of the calculated line using the previously measured instrumental      

broadening function. A convolution is an integral that expresses the amount of 

overlap of one function g as it is shifted over another function f . It is also known as 

“folding”. Convolution of two functions f  and  over a finite range [0, t ] is given 

by 

g
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0
* ( ) (

t
)f g f g t dτ τ τ= −∫                                         (5.11) 

fIn our case, represents the intensity of the spectrum at a specific wavelength and 

can be calculated from Equation 5.8 using the constants from Herzberg’s book [67]. 

g is the Gaussian function 

2

2

2 2exp ,xg
wwπ

⎛
= −⎜

⎝ ⎠

⎞
⎟                                                (5.12) 

where  is the full width at half maximum (FWHM) and can be determined by 

measuring the spectrum from the calibrated Hg lamp.  Each line is broadened after 

convolution with the instrumental profile. The integration is from minimum 

wavelength to the maximum wavelength of the target band, which is from about 330 

nm to 339 nm in this calculation. 

w

(2) The intensities were binned into regularly spaced wavelength increments. There are 

90 bins for the full range of the wavelength from about 330 nm to 339nm. So the 

width of each bin is around 0.9 nm. 

(3) The contribution from each line to each bin is summed to complete the computation 

of the synthetic spectrum. 

(4) Subtract a linear background from the measured spectrum. This might be repeated 

for several times by subtracting a different constant from the spectrum to make sure 

that the background effect is limited to a minimum. Then fit the measured spectrum 

with the synthetic one at different temperature and find the Trot with the smallest chi-

square, which corresponds to the best fitting.  The chi-square is calculated by the 

following equation 
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χ

−
=

−

∑
                                               (5.13) 

P  is the number of spectrum inside one bin divided by the total number of the 

spectrum, is the total number of the bins, and N x  is the measured spectrum intensity 

while 0x  is the synthetic spectrum intensity corresponding to the same specific 

wavelength as x  is. 

The instrumental broadening function has been determined using the 436.2 nm Hg line. 

Figure 5.1 shows the experimental data and the best fit of a Gaussian profile. The circles 

represent the measured spectra and the solid line is the corresponding Gaussian fitting 

with a resolution of about 0.9 nm. 

 

Figure 5.1 Instrumental function measured with 432.6 nm Hg line. 

The synthetic spectrum without convolution with the instrumental function and 

the ones convoluted are shown in Figures 5.2 (a) and 5.1 (b), respectively. The 

instrumental function is taken from a calibrated Hg lamp and shows a Gaussian shape. 
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(a) 

 
(b)  

Figure 5.2 Synthetic spectrum without convolution with the instrumental function, 
(b) Synthetic spectrum convoluted with a Gaussian instrumental function with the 
resolution around 0.9nm. 
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Figure 5.2 (a) shows the synthetic spectrum at different rotational temperature 

before convolution with the instrumental function. It is observed that the spectrums form 

a sharp peak around 337.1 nm but are broadened as the rise of the rotational temperature 

and shift slightly to the shorter wavelength direction. This is reasonable since a higher 

temperature may correspond to a higher rotational energy level, which corresponds to a 

shorter wavelength. After convolution with the instrumental function, the spectrum are 

obviously broadened compared with those before convolution and spread to about 339.5 

nm as shown in Fig. 5.2 (b). 

5.3 Optical Emission Spectroscopy 

The light emitted from the plasma contains important information about the various 

species in the plasma. An optical imaging technique is required in order to obtain and 

analyze local information from the radiation from the plasma. This technique is what we 

called optical emission spectroscopy (OES). In OES, we measure spectra emitted by 

atoms and ions with optical transitions in the wavelength range from about 100 nm to 

900 nm. This range includes the ultraviolet, and visible light (from violet at 380 nm to red 

at 760 nm), and the near infrared. Using OES, we can: 

(1) Determine the composition of solids, liquids, and gases. 

(2) Monitor the deposition of layered devices used in the semiconductor industry, and 

the deposition of hard coatings on tools. 

(3) Study the inner workings of atoms and ions and molecules. We can understand the 

behavior of the chemicals that compose the world we live in better if we know their 

electronic structure. 
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(4) The elements that make up the sun and the stars can also be determined by using 

OES. 

Here we will use the OES to detect the rotational structure of the emission from 

N  C  to B 33
uΠ  ( ).  ' 0, " 0v v= =gΠ2

Usually, as the detected light originates not only from the focus point (S) of the 

imaging system, but also from adjacent volumes, it is impossible to measure the local 

emission signal directly. Generally, the measured emission is integrated along a line of 

sight, which is determined by the small opening angle of the detection system D, or by an 

aperture P as shown in Fig. 5.3.  

 

 

Figure 5.3 Typical arrangement of an OES system. 

Optical emission spectroscopy comprises several techniques that form the most 

important means we have for chemical analysis. 

Spectrometer 

In a spectrometer, collimated light strikes the grating and is dispersed into 

individual wavelengths (colors). Each wavelength leaves the grating at a different angle 

and is re-imaged by a focusing mirror onto the intensifier photocathode at the exit focal 
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plane. Essentially, what a spectrograph does is to form an image of the entrance slit in the 

exit focal plane with each position in the plane representing a different wavelength. As 

each wavelength images at a different horizontal position, the spectrum of the input light  

is detected by the detection system. In our case, the spectrum is spread over the ICCD. 

Individual wavelengths focused at different horizontal positions along the exit port of the 

spectrograph are detected simultaneously. Rotating the diffraction grating scans 

wavelengths across the CCD, allowing the intensity at individual wavelengths to be 

readily measured. 

ICCD Camera 

The detection system used in this experiment is a PI-MAX 1024× 256 Gen. II 

intensified CCD (ICCD) camera with an ST133 Controller (Princeton Instruments).  

Usually, an ICCD camera is used for applications in general macro imaging and 

microscopy imaging. It is ideal for applications involving ultra low light measurements, 

or measurements of transient effects. In the ICCD, the detection path is as follows: A 

photon is incident on the intensifier photocathode and generates a photoelectron. The 

photoelectron is accelerated across a 200 mμ  gap to the front surface of the micro 

channel plate because of its negative charge. The electron is multiplied by successive 

collisions with the channel wall after entering one of the channels. When the electrons 

exit the micro channel, it is pulled across a 1 mm gas and strikes the phosphor screen. 

The kinetic energy of the electron packet is converted by the phosphor into visible 

photons that are then coupled through a fiber-optic bundle to the CCD. The image is read 

out to the Controller after being detected by the CCD and will be digitized and then 

transferred to the computer for processing via a high-speed link. 
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5.4 OES System Used in Experiment 

Figure 5.4 shows the setup used in this experiment.  The ICP sources and vacuum 

system have been characterized in Chapter 2. And only a brief description about the 

spectroscopy equipment will be given here. 

 

Figure 5.4 Experimental Set-up. 

The optical emission spectrometer (OES) system consists of a SpectraPro 300i 

imaging spectrometer with a 0.3 m focal length (Acton Research Corporation), a PI-

MAX 1024 256 Gen. II intensified CCD (ICCD) camera with an ST133 Controller 

(Princeton Instruments), a DG535 Timing Generator (Stanford Research Systems, Inc.), 

and a computer with Winspec data acquisition software. A home-made collimator, made 

×
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of a plano-convex quartz lens of a focal length of 5 cm and diameter of 1.3 cm, collects 

the nearly parallel light entering the collimator and focuses the light onto one end of a 

quartz optical fiber which guides the light to the entrance port of the spectrometer. The 

fiber diameter of 25 μm defines the entrance slit width. A 600 grooves/mm BLZ=300 nm 

grating (the blazed gratings are optimized at 300 nm) has been used to disperse the 

incoming plasma emission. The ICCD camera records dispersed spectrum at the focal 

plane of the exit slit. The pixel size of the photocathode array in the ICCD camera is 25 

μm. In the experiments reported in this section, the ICCD camera was usually gated for 

10 seconds and 30 images was accumulated for each spectrum.  Finally, the image was 

readout to the controller, where it was digitized and transferred via a high-speed data link 

to the computer for further off-line processing.  

The nitrogen second positive system ( , =0- , =0) was used for 

neutral gas temperature measurement in nitrogen and argon discharges at different gas 

pressures and discharge powers. For Ar discharge, 5% nitrogen of the total gas flow rate 

was added to the discharge gas. It is assumed that the small amount of the nitrogen will 

not affect Ar discharge and the Ar and N

uC ∏3
gB ∏3'V "V

 temperatures are equal. 2

5.5 Experimental Results and Discussion 

5.5.1 Typical Experimental Result 

Figure 5.5 shows a typical experimental spectra and the Gaussian fitting. The 

image was sampled from nitrogen discharge, which was operated at 400 W, 10 mTorr. 

The fitted temperature is 895 K. Figure 5.6 shows the chi-square values at different fitting 

temperatures. The minimum 2χ  corresponds to the temperature of 895 K which is taken 

as the measured neutral temperature. 
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Figure 5.5 A typical experimental spectra and the corresponding fitting 

 

Figure 5.6 Chi-square at different temperature when fit the spectra sampled from 10 
mTorr, 400 W nitrogen discharge. 
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The experimental results for nitrogen and argon discharges are presented in the 

following two subsections. 

5.5.2 Argon Plasma 

Dependence of the neutral temperature on the rf power is shown in Fig. 5.7 (5% 

nitrogen was added for diagnostics purpose). At a fixed gas pressure, the temperature 

does not change significantly when the discharge power increases from 100 to 600 W. 

This observation is different from the results reported by some other researchers [25, 26], 

who show an obvious increase of the neutral gas temperature with the discharge power.  

It is evident that the temperature can be grouped into three bands corresponding to the 

pressure ranges: 2-10 mTorr, 50-300 mTorr, and 500 mTorr - 1 Torr. The first 

temperature increase corresponds to a significant increase in the plasma density when the 

pressure changes from 10 mTorr to 50 mTorr as indicated by the Langmuir Probe 

measurement, while the reason for the second temperature increase remains unclear since 

the plasma density in our system peaks at around 300-400 mTorr. Table 5.1 shows the 

electron density in cm-3 at these turning points. The electron density was inferred from 

the electron saturation currents collected by the Langmuir probe 

 100W 200W 300W 400W 500W 600W 

10mTorr 4.8×1010 9.3×1010 1.2×1011 1.5×1011 2.1×1011 2.8×1011

50mTorr 1.3×1011 3.6×1011 4.5×1011 6.5×1011 8.0×1011 1.0×1012

300mTorr 2.3×1011 5.3×1011 9.4×1011 1.0×1012 1.3×1012 1.7×1012

500mTorr 1.6×1011 4.5×1011 6.4×1011 8.2×1011 1.1×1012 1.3×1012

3−Table 5.1 Electron density (cm ) measured with the Langmuir probe. 

Figure 5.8 shows the dependence of the neutral temperature on the gas pressure. 

The temperature increases from approximately 840 K at 2 mTorr to 1850 K at 1 Torr. 
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When related to the gas pressure, the temperature is almost proportional to the logarithm 

of the gas pressure. This result is similar to that found by Tonnis and Graves [27] in an 

inductively coupled plasma abatement device and by Bai and Sawin [71] in transformer 

coupled toroidal argon plasmas. 

 

Figure 5.7 Gas temperature-gas pressure in argon plasma. 

 

Figure 5.8 Gas temperature-log(Pressure/Torr) in argon plasma. 
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5.5.3 Nitrogen Plasma 

Figure 5.9 depicts the neutral gas temperature of the nitrogen plasmas as a 

function of the logarithm of the pressure. The temperature changes from 650 K at 5 

mTorr, 100 W to almost 1300 K at 200 mTorr, 600 W.  For a given discharge power, 

when the pressure is low, the temperature is approximately linear with the logarithm of 

the pressure. However, when the pressure further increases, the temperature drops 

sharply, especially at a low discharge power. This transition pressure increases with the 

discharge power (20 mTorr for 100 W, 50 mTorr for 200 W, and 50 mTor for 300 W). At 

higher powers (400 W, 500 W, and 600 W), the transition points did not occur up to 200 

mTorr.  It is expected that the transition should occur at even higher pressure. However, 

in our ICP device, it is difficult to have stable discharge when the nitrogen gas pressure is 

higher than 200 mTorr. Combined with other observations, such as plasma density and 

optical emission, the reduction in the neutral temperature also corresponds to a transition 

from the H-mode to E-mode. Furthermore, at higher pressures, higher discharge power is 

needed to sustain the H-mode. 

 

Figure 5.9 Gas temperature-log(Pressure/Torr) at different discharge powers in 
nitrogen plasma. 
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Figure 5.10 shows the dependence of the gas temperature on the discharge power. 

In contrast to the insensitivity of the neutral gas temperature to the discharge power in the 

argon plasma,  the neutral temperature in the nitrogen plasma increases linearly with the 

discharge power in the H-mode discharge corresponding to all the data points for the low 

pressure (5 mTorr – 20 mTorr) discharges. The deviation of the temperature data points 

from a straight line for higher pressures (50 mTorr, 100 mTorr, and 200 mTorr) and 

lower powers corresponds to the E-mode discharges. Figure 5.10 again shows that at a 

fixed higher pressure, there is a threshold discharge power to realize transition from E-

mode to H-mode. 

 

Figure 5.10 Gas temperature-discharge power at different working pressures in 
nitrogen plasma. 

It is believed that discharges in molecular gases contain several neutral heating 

mechanisms which are not present in discharges in atomic gases, such as Franck-Condon 
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heating, thermalization of electron impact vibrational excitation products that releases 

vibrationally and/or electronically excited metastable species back to the bulk discharge. 

And the nitrogen discharge may exhibit higher neutral temperatures even at lower plasma 

densities [26]. By comparing the experimental results in the argon and nitrogen 

discharges, however, it is found that for the same discharge conditions, the neutral 

temperature in the argon plasma is usually higher than that in the nitrogen plasma in 

contrast to the result reported in ref. [26]. The discrepancy may be attributed to the lower 

plasma density in the nitrogen discharge which has been verified by the data from 

Langmuir Probe measurements. It is not surprising to find a lower neutral temperature in 

low-density plasma since the major mechanism of heating neutrals is the electron neutral 

collisions. The heat transfer to the neutral species through e-n collisions is proportional to 

the plasma density and neutral gas density: ><∝ vnnW neheat σ . As a result, the heating 

effect caused by the much lower density of the nitrogen plasma as compared with the 

argon plasma might outweigh the effect caused by those mechanisms unique in the 

molecular gases.  
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Chapter 6  

Conclusions and Suggestions for Future Research 

The single Langmuir probe and optical emission spectroscopy have been used to 

analyze the inductively coupled plasma of atomic gases (argon and helium) and 

molecular gases (nitrogen and hydrogen) over a wide range of gas pressures and rf 

powers.   

Information about the EEDF has been obtained by using the ac method via the 

radially tunable probe. The results in atomic gases show a change to Druyvesteyn-like 

distribution in EEDF due to the heating mechanism transition to collisional heating as a 

result of the increasing gas pressure. In 1 mTorr argon plasma, the EEDF shows a two 

temperature structure and this might be caused by the rapid diffusion of the high-energy 

electrons to the chamber wall. The EEDF in argon plasma shows non-local property at 

the pressure of 1 mTorr and this can be verified by the small variation of the average 

electron energy. The non-locality still holds at 10 mTorr although the variation in ε  

increases slightly. The variation reaches up to 14.5% when the pressure increases to 50 

mTorr. The significant variation of the ε indicates that the applicability of non-local 

theory becomes invalid at this high pressure.  

EEDF in molecular gases nitrogen and hydrogen is distinct from what has been 

reported and is always accompanied by an extra peak. This might be caused by the super-
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elastic collisions which transfer energy from the vibrational or electronic excited states to 

the electrons. This phenomenon is more obvious at a low local electric field, under which 

condition the vibrational and electronic excited states of molecules are populated. 

The average electron energy in argon plasma shows a decreasing when the gas 

pressure is increased as a result of the inelastic collisions which transfer energy from the 

high energy electrons to the neutrals and this is consistent with the power balance 

equation. Regarding the rf power, the increase of the average electron energy at low 

pressures might be caused by the heating of neutrals, which leads to a decrease of the 

neutral number density, and thus an increase of the average electron energy. When 

compared with the average electron energy of helium gas, it is found that the ε  of 

argon is lower than that of helium. This is normal since the ionization threshold energy of 

helium is higher than that of argon. 

Plasma density in argon discharge is in the range of /cm 3  and peaks 

around 300 mTorr. Any further increase of the neutral gas pressure leads to a decrease of 

the plasma density. The result can be explained by the power balance relation. 

10 1210 10−

Significant heating of neutrals in the ICP has been verified by the optical emission 

spectroscopy measurement. The temperatures measured are several times higher than the 

room temperature with the maximum one reaches as high as 1800 K in argon plasma. The 

electron density plays an important role in controlling the neutral gas temperature. In the 

H-mode argon and nitrogen discharges with high densities, the neutral temperature is 

almost proportional to the logarithm of the gas pressure. The effect of the rf power on the 

neutral gas temperature is more significant in the nitrogen plasma. The neutral gas 

temperature increases almost linearly with the rf power in nitrogen plasma while it 
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remains almost constant in the argon plasma. Due to the much lower plasma density in 

nitrogen, the neutral temperature is found to be lower than that of argon under the same 

discharge condition. The discharge mode transition can also be observed from the jumps 

of the neutral gas temperature from a high temperature to a lower one when increases the 

gas pressure at a fixed discharge power. The discharge mode transition has also been 

verified by the plasma density. 

Below are some suggestions for future work regarding this study: 

(1) Improve the probe circuit to minimize the circuit resistance and check whether the 

transition to Druyvesteyn distribution with the increasing rf power is caused by the 

large circuit resistance. 

(2) Measurements of vibrational and electronic excited states in molecular gases might 

be helpful to find out how they affect the formation of EEPF exactly. 

(3) Local electric field measurement is necessary in order to evaluate the effect of super-

elastic collisions. 

(4) Extending this work to the processing plasmas. 
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