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Introduction

It is well known that turbulence, the major candidate to explain anomalous transport, can be

quenched by sheared flows which rip the convective cells apart, thus forming a barrier. The op-

posite mechanism, i.e. the turbulence generating a macroscopical sheared flow, has been studied

as well, both on the theoretical side [1], as on the experimental one [2]. Knowing that the tur-

bulence in the edge of the plasma is quasi-electrostatic, we recently developed a 1D model [3],

which calculates the poloidal acceleration profile, due to the flux surface averaged influence of

the electrostatic Reynolds stresses, in presence of bulk viscosity and neutrals.

Now we would like to study the link between Reynolds stress and zonal flows (defined by

kθ << kr ). Therefore we chose a turbulence model, where the fluctuating velocity of the ions lies

in the perpendicular plane. The electrons are considered as an isothermal fluid, providing charge

neutrality by flowing along the field line against resistivity. The resulting model is the famous

Hasegawa-Wakatani (H.-W.) model [4] in 2D (r,θ ) and is based on two independent fluctuating

quantities (number densityn and electric potentialφ ), which are driven by a background density

profile no(r). We confront this model with experimentally measured turbulence in CASTOR,

and reported in [3].

Theoretical modelling

To the original H.-W. model [4], we added curvature terms representing the effect of the

curved and inhomogeneous magnetic field[5], as well as particle diffusion in the electron con-

tinuity equation, to increase the stability during the numerical calculations. With the proper

non-dimensional definition of the electron densityn′ = n
no

and the potentialφ ′ = eφ
kBT , we can

write our model equations:

(∂t ′ − [φ ′, ])∇ ′2
⊥φ ′ = C1 (φ ′−n′)+C2∇ ′2

⊥

(
∇ ′2
⊥φ ′

)
−ωBK ′(n′) (1)

(∂t ′ − [φ ′, ])n′ = C1(φ
′−n′)+∂y′ φ

′∂x′ (lnno)+ωBK ′(φ ′−n′)+C2∇ ′2
⊥n′ (2)

in which the primes denote dimensionless quantities (x′ = x/ρi , y′ = y/ρi , t ′ = ωcit) and[•,•]

are Poisson brackets. The adiabaticity coefficient of the electron response is abbreviated by
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C1 = kTeσz
e2ωcino

k2
z (k2

z is determined by the background density gradient through the assumption of

maximum growth rate [4]) and the kinematic ion shear viscosityµ is introduced byC2 = µ

ωciρ
2
i
,

with ρi the Larmor radius,ωci the ion cyclotron frequency andσz the electron conductivity

in the parallel direction. The evolution of these dynamical equations is computed locally by

a pseudospectral code, for the time being on a rectangular gridx− y with periodic boundary

conditions (x representing the minor radial directionr, y tangent to the poloidal directionθ ). The

curvature depends on the poloidal angle through the operatorK ′( f ) = (sinθ∂x′ + cosθ∂y′) f ,

with ωB = 2ρi
Ro

. The real space between two different grid points is smaller than half a gyro

radius: in all calculations we usedρi/2.1, so that the maximum dimensionless wavenumber

is 2.1π in both directions. Wavenumbers in absolute value above 2π are artificially damped

by a hyperviscosity in the vorticity equation [6]. The time stepping algorithm is based on a

predictor-corrector scheme.

Comparison with experimental data from Castor
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Figure 1:Auto-correlation function

for the potential and the density (by

simulation and on CASTOR).

To compare with the data taken at Castor and reported

in [3], we put 3 ”probe pins” in a grid of 33×33 points

(=8×8mm in real units) at the same relative position as

the pins of the real probe used in [3](on top of the toka-

mak, θ = π/2, see Fig. 4). We simulated the self con-

sistent generation of turbulence on the basis of equa-

tions (1)-(2) and sampled the signals at the same fre-

quency as during the experiment(1 MHz). The coeffi-

cientsC1, C2 andωB are computed according to the edge

parameters of Castor (Ti ≈ 20eV, ni = 1.5× 10191/m3,

∇ ni = −7.5× 10201/m4 and Ro = 0.40m, a = 0.085m,

BT = 1T). The correlation timeτ ≈ 7µs (see Fig. 1) confirms the experimental findings [7]. A

(a) (b)

Figure 2:(a) Wavenumber-frequency spectrum S(kθ , f ) from CASTOR (just inside the limiter),

and (b) from simulation
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more profound cross check of the code can be done by looking at the wavenumber-frequency

spectrum shown in Fig. 2, derived from ohmical CASTOR data by the experimental two-point

correlation technique, proposed in [8]. The experiment reveals a phase velocityω/k of the or-

der of 6000m/s (Fig. 2.(a)), somewhat higher than the one derived from simulation (vph =1200

m/s - Fig. 2(b)).

Now if we look at the fluctuation levels ofφ and the Reynolds stress (Fig. 3), it is clear that

the simulated fluctuation levels are somewhat lower than experimentally observed (factor of 3

for the raw data, one order of magnitude for the Reynolds stress). Nevertheless, the behavior is

quite similar.
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Figure 3:Up: floating potential [dimensionless] at Castor (a) and simulated (b). Bottom: time

averaged value (blue: rapid fluctuations with a boxcar window ofτ = 10µs; red: slow ...τ =

100µs) of Reynolds stress at Castor (c) and from simulation (d).

Figure 4:Snapshot ofφ and n.

Looking further at the time trace of the po-

tential and density fluctuations starting from

a standard k-spectrum (Fig. 5.), we can dis-

tinguish several possible states of the turbu-

lence. In our case of interchange turbulence

with CASTOR relevant parameters, a simple

snapshot of the grid (at saturation) reveals that the density and the potential fluctuations are

out of phase. A typical cross-correlation coefficient between them is≈ 0.15, compared to

≈ 0.2−0.35 experimentally (depending on minor radius). Moreover, the computations present

over the time of simulation periods during which the anomalous transport is reduced (by a fac-

tor of 3 to the nominal value,Dnom = − 〈ñṽr 〉
∇ n ≈ 0.2m2/s). Interestingly, the transitions from
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low to strong diffusion seem to be accompanied by more Reynolds stress activity. This means

that Reynolds stress is the driving force behind the transition. In the quiet situations the turbu-

lence organises itself in a poloidally elongated structure for what concerns the electric potential,

which can be interpreted as a zonal flow (kθ < kr ). With the restrictions on the grid size, this

condition for zonal flow is rather difficult to verify on the wavenumber-spectrum (see peaks A

and B on Fig. 5(a)). On the frequency spectrum (Fig. 5(b)) we can distinguish a peak in the

spectrum at a frequency of aboutf = 25 kHz, which could support the indication of a zonal

flow.
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Figure 5:Instantaneous wavenumber-spectrum for the potential fluctuations (a), and spectrum

of the fluctuating floating potential (b) during ”zonal flow” situation.

Conclusion

Our model seems to lead to relevant results with respect to the measurements made at the

edge in Castor, on behalf of the level of the fluctuations, which is slightly too low. This model

predicts somehow as well the (temporarily) existence of zonal flows in the saturated state of the

turbulence, during which the anomalous diffusion is reduced. The role of the Reynolds stress

herein needs further investigation.
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