

Alfvén-wave character oscillations in tokamak COMPASS plasma

- T. Markovič^{1,2,*}, J. Seidl¹, A. Melnikov^{3,4}, P. Háček^{1,2}, J. Havlicek^{1,2}, A. Havránek^{1,5}, M. Hron¹, O. Hronova¹, M. Imríšek^{1,2},
- F. Janky^{1,2}, K. Kovařík^{1,2}, O. Mikulín¹, R. Pánek¹, R. Papřok^{1,2}, J. Pipek¹, P. Vondráček^{1,2}, V. Weinzettl¹
- ¹ Institute of Plasma Physics CAS, Prague, Czech Republic
- ² Charles University in Prague, Faculty of Mathematics and Physics, Prague, Czech Republic
- ³ National Research Centre 'Kurchatov Institute', Moscow, Russian Federation
- ⁴ National Research Nuclear University MEPhI, Moscow, Russian Federation
- ⁵ Czech Technical University in Prague, Faculty of Electrical Engineering, Prague, Czech Republic

* E-mail address: markovic@ipp.cas.cz

1. Introduction and motivation

- Auxiliary heating or fusion products \rightarrow suprathermal particles that drive the Alfvén modes unstable [1,2] \rightarrow degradation in high-energy particle confinement
- Toroidal Alfvén Eigenmodes (TAE):
 - Gap mode oscillations interference between 2 poloidal harmonics
 - Low damping rate (in comparison to Aflvén continuum)
- Currently open questions [2]:
 - Non-linear behavior of Alfvén Eigenmodes (AE) in toroidal devices

2. Experimental arrangement on the COMPASS tokamak

 $I_{p} < 0.4 \text{ MA}$

- Small tokamak \rightarrow flexible operation
- ITER-like geometry.
- H-mode discharges:
 - Fully ohmic H-modes. Parameters: $R_0 = 0.56 \text{ m}$
 - NBI-assisted H-modes. *a* = 0.2 m
- Equipped with RMP coils.
- Good coverage with magnetic diagnostics.
- Oscillations detectable as coherence between detection coils:

- Effect of Resonant Magnetic Perturbations (RMP) and AE instabilities on fast particle confinement
- Tokamak COMPASS \rightarrow flexible RMP configuration + recent observation of Alfven-like oscillations with <u>unclear driving mechanism</u>

3. COMPASS plasma eigenmode oscillations

- Oscillations of 50-250 kHz spectral range reported during COMPASS ELM-free H-modes [3].
- *f* < 300 kHz.
- H-modes:
 - identified as TAE [3].
 - identified as BAE [3].
- LFS oscillations also observed by
- integrated sensors:
 - Mirnov coils of $f_{Nyquist}$ < 1.0 MHz.

1.0

- Alfvén-wave oscillations travelling along magnetic field-lines + Doppler shifted by plasma rotation [5]: $f_{\rm tot} = f_A + n \cdot f_{\rm plasma}$
- Typical MHD oscillations rotating with bulk plasma.
- COMPASS equipped with stationary RMP field circuit.
- Interaction of tearing mode with RMP field \rightarrow generation of locked mode \rightarrow localized braking of plasma rotation.

COMPASS RMP field generation circuit

Persistence of high-frequency oscillations during locked mode phase indicates their travelling-wave character

[XHz] 600

400

200

Detail of low-frequency oscillations showing braking of tearing mode

- wide range of high-frequency oscillations in COMPASS plasma.
- It was found that these oscillations:
 - Are present in bot L-mode and H-mode plasmas (unlike those previously reported in [3]).
 - Show TAE-like frequency scaling with discharge parameters.
 - Suggest travelling-wave character.
 - Highest-frequency oscillations \rightarrow data suggest their driving mechanism includes runaway electron beam.
- Driving mechanism of the rest of oscillations still unknown \rightarrow MHD modelling necessary.

Acknowledgements

This work was supported by projects GACR P205/12/2327, GACR 15-10723S, GA14-35260S and by grant RSF 14-22-00193.

References

[1] W.W. Heidbrink, Physics of Plasmas 15, 055501 (2008). [2] N.N. Gorelenkov, S.D. Pinches, K. Toi, Nucl. Fusion 54, 125001 (2014). [3] A.V. Melnikov, T. Markovic, L.G. Eliseev, et al., Plasma Physics and Controlled Fusion 57, 065006 (2015). [4] K. Kovařík, et al., 41st EPS Conference Proceedings, P5.025 (2014). [5] S.E. Sharapov, 11th CMSS on Plasma and Fusion Energy Physics proceedings (2013).