The tokamak GOLEM CAAS report #4

Jaroslav Čeřovský

on behalf of the tokamak GOLEM team

25rd September 2020

Content

- GOLEM vs. Runaways
 - Basic physics of RE
- Progress in HXR diagnostics
 - Commonly used detectors
 - Diagnostic at GOLEM
- Analysis of data
 - 2nd round of dosimeters measurement
 - ullet Verification of influence of p_{gas} and magnitude of B_T
- 4 Future work
 - Plans and ideas
- Conclusion

Basics physics of RE

- runaway electrons studied in various fields of physics
- in tokamaks RE generated during start-up phase of discharge, during low density discharges or plasma disruption
- GOLEM-like plasmas: low density plasma ($n_e \approx 10^{18}~{
 m m}^{-3}$) and relatively high electric field ($E \approx 1-2~{
 m V/m}$)
- \rightarrow favourable conditions for RE generation
- estimated typical energies at GOLEM
- ightarrow critical energy: $W_c \approx 1.76 \; \mathrm{keV}$
- \rightarrow orbit shift limit: $E_{max} \approx 2 \text{ MeV}$
- \rightarrow time limit: $E_{max} \approx 2 4 \text{ MeV}$

Commonly used detectors

 commonly used detectors scintillation detectors at tokamaks: NaI(TI), BGO, LaBr₃, CeBr₃, LYSO

Scintillator	Light yield (photons/keV)	Decay time [ns]	Density [g/cm3]	Hygroscopic
Nal(TI)	38	250	3.67	yes
LaBr ₃ (Ce)	63	16	5.08	yes
LaBr ₃ (Ce+Sr)	73	25	5.08	yes
LYSO	33	36	7.1	no
BGO	10	300	7.13	no
NaI(TI+Li)	35	240, 1.4 μs	3.67	yes
CeBr ₃	60	18	5.1	yes
YAP(Ce)	25	28	5.37	no

 nowadays trend: usage of detectors with fast and high density scintillation materials

Diagnostic at GOLEM

Scintillation detectors

- 2× NaI(TI) 2 inch crystal, manufactured by ENVINET and NUVIA
- YAP(Ce) 1 inch crystal, manufactured by CRYTUR
- $2 \times \text{YAP(Ce)}$ (25 mm) and $2 \times \text{CeBr}_3$ (20 mm) demountable crystals sharing 2 photomultipliers, manufactured by Scionix

RE related diagnostics

- Strip detector
- Small size crystal with SiPM
- Radiometer
- Set of dosimeters

In near future:

Timepix detectors

 re-initiated negotiation about installation of Cherenkov detectors

Characterisation of detectors - method

fast data acquisition system based on RedPitaya (STEMIab 125-14)

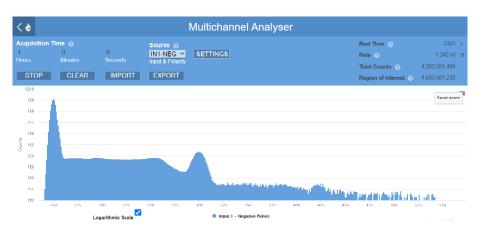
STEMlab 125-14

channels: 2

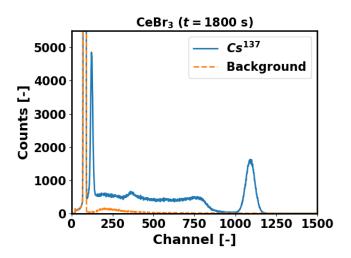
sample rate: 125 MS/s

ADC resolution: 14 bit

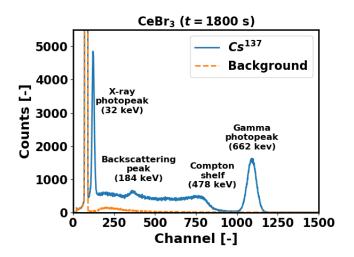
• voltage range: \pm 1/ \pm 20 V


bandwidth: 60 MHz

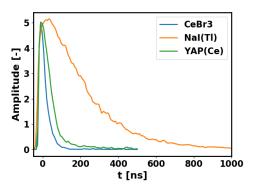
• input impedance: $1~\mathrm{M}\Omega$


- \bullet input impedance of DAQ matched to 50Ω output impedance of the photomultipliers
- DAQ system controlled by Multichannel Analyser application

Characterisation of detectors - method

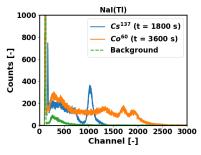

 data acquired with help of Multichannel Analyser web based application (freeware application - available on GitHub)

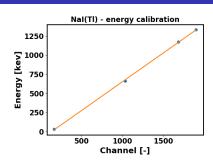
Characterisation of detectors - example spectrum

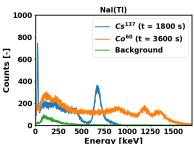

important features of Cs¹³⁷ gamma spectrum could be clearly distinguished

Characterisation of detectors - example spectrum

 important features of Cs¹³⁷ gamma spectrum could be clearly distinguished

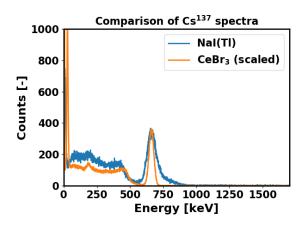

Characterisation of detectors - pulse shapes




 comparison of pulse shape of different detectors: CeBr₃, NaI(TI), YAP(Ce)

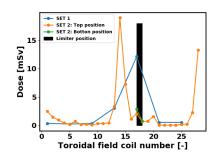
- \rightarrow expected behaviour observed: decay time of CeBr $_3$ approx. 10 times faster than NaI(TI)
- \rightarrow CeBr₃, YAP(Ce) good choice for high rate photon counting (YAP(Ce) poorer energy resolution)

Characterisation of detectors - NaI(TI)



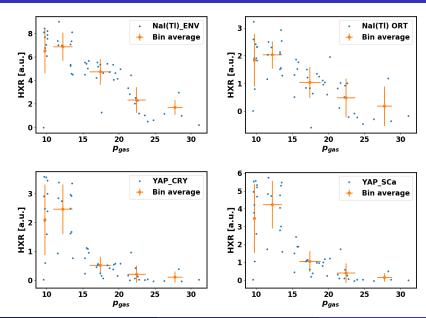
- four peaks used for energy calibration (Co^{60} two gamma peaks, Cs^{137} gamma and X-ray peak)
- energy resolution: $\approx 14 \%0662 \text{ keV}$ (typically 7%, old detector)

Characterisation of detectors - NaI(TI) vs. CeBr₃

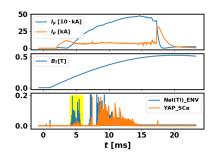


• measured energy resolution $\approx 6\% @662 \text{ keV}$ (typical value: $\approx 4\text{-}5\% @662 \text{ keV})$

Characterisation of radiation by dosimeters (2nd round)



 2nd set of OSL dosimeters install at each toroidal field coil



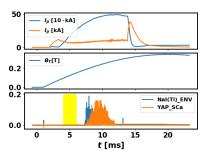
- consistent results given by 1st and 2nd set of dosimeters
- → new feature in 2nd set of dosimeters
- → should be systematically exploit

Scan in pressure of working gas

Influence of magnetic field

#336808

discharge setting:


$$U_{CD} = 800 \text{ V},$$

 $U_{BT} = 1300 \text{ V}$

ightarrow higher magnetic field

#336807

• discharge setting: $U_{CD} = 800 \text{ V},$ $U_{BT} = 800 \text{ V}$

→ lower magnetic field

Future work

- continuation in ongoing characterisation of scintillation detectors
- ightarrow installation and operation of detectors during last RE experimental campaign at COMPASS (November-December 2020)
 - continuation in RE experiment with usage of new control features of tokamak GOLEM (if possible) - gass puff modulation, plasma position control
 - analysis of existing data and evaluation of results
 - for easier evaluation of data start with modelling of radiation transport (e.g. with FLUKA) - optimisation of shielding, better interpretation of experimental data

Conclusion

- characterisation of scintillation detectors
- → better interpretation of results preparation on RE experimental campaign at COMPASS
 - new set of OSL dosimeters evaluated
- → consistent with previous observations, but new feature seen
 - investigated influence of pressure of working gas
- → expected behaviour observed
 - prompt losses after breakdown of plasma spotted for lower magnetic field
- ightarrow needs to be systematically observed and understood