Recent Experimental Studies on the STOR-M Tokamak

C. Xiao, A. Rohollahi, T. Onchi, S. Elgriw, J. Adegun, M. Patterson J. Zhang and A. Hirose

University of Saskatchewan, Canada

Outline

- STOR-M tokamak
- Compact torus fueling and repetitive operation
- Momentum injection by compact torus injection
- Effects of Li coating on the STOR-M discharges

STOR-M Tokamak

STOR-M Tokamak

STOR-M Tokamak Parameters

Major radius	R	46 cm
Minor radius (limiter)	а	12 cm
Toroidal B field	B_{ϕ}	1 T
Plasma current	I_p	20-30 kA
Average electron density	n _e	$1 \sim 3 \times 10^{13} \text{ cm}^{-3}$
Electron temperature	T_e	220 eV
Ion temperature	T_i	50~100 eV
Discharge duration	t_d	50 ms
Energy confinement time	$ au_{\scriptscriptstyle E}$	1~3 ms

STOR-M Tokamak and Features

- Iron core tokamak
- Feedback position control
- •AC (alternating current) capability
- Compact Torus (CT) injector
- Resonant Magnetic Perturbation (RMP) helical coils
- A host of diagnostics

Compact Torus and Fueling

Compact Torus (CT) Injection for Core Fuelling

• Fuelling

- Current fuelling technology (pellet injection and or gas puffing) is unable to directly fuel the reactor core
- Compact Torus (CT) Injection
- The only candidate identified by an ITER working group for deep fueling
- ➤ Able to optimize pressure profile → increase bootstrap current
- ➤ Momentum injection by tangential CT injection → control plasma flows (increase tolerance to error field, suppress RWM, etc.)

What is a Compact Torus (CT)?

- Magnetically confined robust plasmoid
- CT can be formed and accelerated in a coaxial gun
- High in density and small in size
- Can be accelerated high velocities (hundreds of kilometers per second)

University of Saskatchewan Compact Torus Injector

CT formation principle

Formed and accelerated in a coaxial gun via J×B force

CT penetration and fuelling

Tokamak Plasma

High density, small CT to fuel the tokamak core directly.

Repetitive operation is needed for steady-state operation of reactors.

Penetration requirement

CT directional kinetic energy density must exceed the tokamak magnetic field energy density for penetration

$$\frac{1}{2}m_{i}n_{ct}v_{ct}^{2} > \frac{B_{tok}^{2}}{2\mu_{0}}$$

 n_{ct} : CT ion density m_i : CT ion mass v_{ct} : CT velocity B_{tok} : tokamak toroidal magnetic field USCTI parameters:

$$n_{ct} = 10^{15} \text{ cm}^{-3}$$

$$v_{ct} = 200 \text{ km/sec}$$

total mass 0.5 μ g

Injection Velocity Measurement

Injection Velocity Measurement

- CT velocity is measured by time of flight method
- CT velocity can be controlled by the acceleration bank voltage

Repetitive CT Operation

T. Onchi *et. al* IEEE-PS, 2015 DOI: 10.1109/TPS.2015.2499218 https://www.researchgate.net/publication/286509993

Repetitive CT injection

- The CT is produced through magnetic reconnection
- It can only be produced one at a time
- For steady stead reactor operation, repetitive CT operation is required.
- For multiple CT injection during STOR-M pulse duration (30-50 ms), 100 Hz is needed.

Repetitive CT Operation – Burst Mode

- 1. Store energy in slow capacitor banks (tens of seconds)
- 2. Charge fast banks quickly via a stack of IGBT gates (10-100 ms)
- 3. Discharge fast banks and create a CT (tens of μs)
- 4. Recharge fast banks and repeat the processes 2, 3, 4 until the voltage in the slow bank become too low

Picture of fast charge reloading circuit

Example of repetitive CT operation at 10 Hz. A system has been built and will be tested to charge the fast banks to the same voltages for all shots

Momentum Injection by CT Injection

A. Rohollahi et al 2017 Nucl. Fusion 57 056023

Momentum Injection CT

At the last IAEA-RUSFD meeting in Prague we reported

- RMP and co-current tangential CTI induced the change of plasma flow toward the current direction regardless of the intrinsic flow directions
- RMP and CTI both supressed MHD oscillations
- RMP does not have net momentum injection
- CT has a momentum 10 times the STOR-M toroidal rotation momentum

Flow modification by CT injection

Ion Doppler Spectroscopy (IDS)

Reverse plasma current direction → Reverse intrinsic flow direction (along CT inj. Direction in the core plasma) Momentum injection → speed up MHD suppression → slow down

IAEA-RUSFD 2015 slide-plan

Toroidal Flow Measurement by IDS System

CCW lp Current

- Core plasma: CW (anti-lp)
- Outer plasm: CCW (co-lp)

CW Ip Current

- Core plasma: CCW (anti-lp)
- Outer plasm: CW (co-lp)

Plasma Parameters after CTI

Effect of CTI on Toroidal Flow

Effect of CTI on Toroidal Flow

The threshold CT velocity for changes in flow velocity depends on the location of the impurity, perhaps reflecting CT penetration depth

Lithium Coating and its Effects on the STOR-M Discharge

Li Coating of the Inner Tokamak Wall

- Lithium (Li) evaporator
 was provided by General
 Fusion Inc. in Burnaby,
 Canada.
- It has been used in STOR. M for two experimental campaigns
- Preliminary results have been obtained

Significant reduction of gaseous impurity in the chamber after Li coating

23rd IAEA TM RUSFD, Santiago, Chile, March 29-31, 2015

normal shot: terminated by gas puffing

super shot after Li coating (without termination gas puffing).

- higher current, lower loop voltage,
- high HXR (runaway electrons?), terminated by disruption.

Plasma parameters after Li coating

Impurity emission

measurements

- 8-channel F.O. bundle
- Collimators at 8 vertical radial locations
- Imaging spectrometer
- ICCD camera

radius

wavelength ----

Atter 900 shots

Evolution of Plasma Impurities after Tokamak Discharges

Impurity line emission summed over those at all 8 radial locations: reduced when freshly coated.

Atter600 shots

Plasma Density v.s. Number of Shots After Li Coating

Summary

- Repetitive CT operation up to 10 Hz has been achieved (and 100 Hz operation is planned)
- Tangential CT injection is able to control the toroidal flow velocities of the tokamak plasma through momentum injection
- Surface coating on STOR-M with Lithium has resulted reduced fuel recycling, reduced impurity radiation, increased plasma current and increase HXR emission.

Thank you!