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Abstract— Tokamaks are toroidal devices to create and
confine high-temperature plasmas, and are presently at the
forefront of nuclear fusion research. Many parameters in a
tokamak are feedback controlled, but some quantities that are
either difficult to measure or difficult to control are still con-
trolled by trial-and-error adjustments of feedforward signals.
For example, the current density profile plays an essential role
in the confinement and stability properties of a tokamak plasma
but only few demonstrations exist of feedback control, partly
due to the unavailability of the measured variables in real-time
on many tokamaks. The aim of this paper it to enhance the
control of the current density profile by using batch-to-batch
control. An iterative learning controller (ILC) is designed for
the current density profile control problem. A simulation study
for the future ITER tokamak is shown in which ILC is used to
obtain a desired current density profile at the end of the plasma
ramp-up phase. Experimental application of ILC to plasma
discharges in the TCV tokamak is presented, where the time
trajectory of the plasma internal inductance, a scalar measure
of the current density profile width, is controlled by varying
the total plasma current. Both demonstrate the feasibility of
the proposed approach and encourage more extensive use of
ILC in tokamak experiments.

I. INTRODUCTION

Nuclear Fusion is the process whereby two light ions
combine to form a heavier one, liberating energy. One
promising method to achieve the high temperatures required
for this process on earth is to confine a hot plasma using a
device called a tokamak [1], which features an axisymmetric,
toroidally shaped magnetic field configuration. Tokamaks are
pulsed devices, in which the plasma is created, sustained,
and then ramped down in a process known as a ‘shot’ or
‘discharge’. During each discharge, a number of feedback
control loops are used to control key parameters of the
discharge. For a general overview of tokamak plasma control,
see [2] [3].

While feedback control of some parameters of a toka-
mak (e.g. position, shape, plasma current, stored energy)
is routinely performed, control of many other quantities is
less routine (e.g. current density profile, pressure profile,
density profile, internal plasma inductance) and in many
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cases parameters are still controlled by trial-and-error ad-
justment of feedforward signals. Several reasons can be
indicated to explain this. Firstly, some quantities are essential
for tokamak stability and had to be controlled since the
early stages of tokamak research, while control of many
other quantities is optional, improving the performance and
reproducibility but often not strictly necessary for the physics
studies which are the focus of many present-day experiments.
Also, many controlled variables are not measured in real-
time but have to be reconstructed a-posteriori by merging
information from several measurements in complicated post-
shot analysis procedures.

One important quantity that is not yet controlled in real-
time routinely is the current density profile. This plays an
important role in the stability and confinement performance
of the plasma, thus defining whether the conditions for fusion
can be achieved. Extensive research has recently been carried
out on feedback control of the current density profile, in both
simulations [4], [5], [6], [7], [8] and experiments [9], [10],
[11], [12]. Feedback control is a very promising solution,
but is unfortunately rarely applied in existing tokamaks.
One reason is that on many tokamaks the current density
profile can presently not be determined in real-time with
sufficient accuracy for feedback control, mostly due to lack
of reliable measurements. In other cases, tokamak operators
appear reluctant to relinquish control over some key variables
to feedback controllers since they may affect the experiment
in an unexpected manner, and may lead to losing highly
scarce experimental time.

Purely feedforward-based control methods have also been
suggested and studies of actuator trajectory optimisation
for current density profile control have been presented in
[13], [14], [15]. While these are also promising as tools for
preparing a plasma discharge, without some form of feedback
the inevitable model mismatch will result in errors in the
profiles obtained in actual experiments.

Although important steps have been taken on both feed-
forward and feedback control, they are at present rarely
applied due to the mentioned disadvantages of each ap-
proach. resulting in poor open-loop control performance.
This paper aims to develop a batch-to-batch control approach
for the current density profile that combines advantages of
feedforward and feedback control, and does not suffer from
the above disadvantages.

The potential of batch-to-batch control techniques, where
the error from a previous trial is used as feedback signal to
design a feedforward input for the next trial, has remained
relatively unexplored in the context of tokamak control. In
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this paper, a batch-to-batch control technique is proposed
for tokamak control problems, complementary to ongoing
efforts on feedback and feedforward control, specifically to
improve feedforward trajectories when feedback is not (yet)
practical, possible, or desired. In addition, if feedback control
is implemented, batch-to-batch control can still be used to
improve the control performance since it does not suffer from
causality constraints in the physical time domain [16].

Iterative Learning Control (ILC) is one such batch-to-
batch control method that is specially suited for repetitive
control problems. It has been applied to various applications
including robot arms [17], wafer scanners [18] and printing
systems [19]. In this paper, we present the application of
ILC to the tokamak current density profile control problem
for the first time in both simulation and experiment.

There are some interesting differences between the appli-
cation of ILC to tokamak control problems in this paper with
respect to mechatronic applications. While ILC in mecha-
tronics systems is used to as add-on to feedback controlled
systems to enhance the performance by designing a better
feedforward input, ILC is used here as stand-alone method
to iteratively design feedforward signals for a situation where
feedback control is not used. Also, a key ingredient in ILC
is a dynamical model of the system. ILC in mechatronics
applications is commonly based on lumped-parameter sys-
tems that are well described by linear-time-invariant (LTI)
models and can be readily simulated. Instead, the evolution
of tokamak plasma profiles is described by a set of nonlinear
PDEs. In this paper these PDEs are discretised to yield a
set of nonlinear ODEs. These are solved, and a linear-time-
varying (LTV) model is simultaneously determined around
the nonlinear trajectory. This (locally valid) LTV model is
used as input for the ILC method.

Indeed, tokamak current density profile control was men-
tioned previously in [20] as a motivation to study the
application of ILC to distributed parameter systems described
by linear, parabolic PDEs in infinite-dimensional setting and
tested on a heat diffusion equation with constant coefficients.
In the present work, a very different approach is taken and
ILC is applied to a discretized, nonlinear model for tokamak
plasma profile behaviour and tested in both simulation and
experiment.

The rest of this paper is structured as follows. In Section
II, we first present a rationale for the use of ILC in tokamak
control in general, outlining some of the peculiarities of toka-
mak control that make ILC a particularly attractive option
for a variety of control problems. Section III describes the
physical PDE model describing tokamak current density pro-
file diffusion and the controlled variables. In Section IV the
ILC algorithm is formulated for our particular problem. Next,
results of applying ILC to the current profile control problem
in both simulation (Section V) and experiment(Section VI)
are shown. Other tokamak control problems which may
benefit from batch-to-batch control solutions, as well as the
conclusions, are presented Section VII.

II. APPLYING ILC TO TOKAMAK CONTROL

In this section we will present the main reasons why ILC
appears particularly useful for tokamak plasma control. We
begin by mentioning some characteristics of tokamak control
problems and then point out which properties of ILC match
well with these characteristics.

A. Tokamak control characteristics and constraints

Tokamak control problems have some specific character-
istics and constraints, listed below.
T1 Tokamaks are repetitive systems. Since the confining

plasma current usually has to be induced by external
coils, limits on the current in these coils mean that the
plasma can not be sustained indefinitely. This pulsed
character means that the same, or very similar, plasmas
are created multiple times. Even if the entire discharge is
not the same, the crucial, initial part of the discharge in
which the plasma is established, called the ramp-up, is
often the same for many shots and is the result of careful
fine-tuning.

T2 Measurements of high-temperature plasmas are techno-
logically difficult, therefore not all measurements are
available in real-time for use in a feedback controller.
Many plasma parameters become known only after ded-
icated post-shot analysis and interpretation of discharge
data, which often required human intervention and vali-
dation. While significant effort is being put on integrating
an increasing number of measurements into plasma real-
time control systems, including ongoing work on model-
based state observers for plasma current density profile
[21], this is not always possible nor practical, particularly
in the initial phase of a new tokamak’s operational life
when many sensor systems are simply not ready or not
immediately integrated with the real-time control system.

T3 Adoption of feedback controllers is often constrained in
practice by the fear of many discharges being required
for commissioning and tuning of each controller for a
particular operating scenario. Therefore many quantities
are feedforward-controlled.

T4 Physical models of the processes are available in a
suitable form. Though complete first-principles-based
models for tokamak plasmas are difficult and time-
consuming to simulate, a number of control-oriented
models for the evolution of the variables of interest are
available.

T5 Amplitude and state constraints are ubiquitous in toka-
maks. Actuator power and ramp rates are limited by
technological constraints and systems are usually oper-
ated close to their maximum capacity. Constraints in the
operating space, originating from plasma stability limits,
translate into state constraints for the control problem.
Some actuators, in particular gas valves, often have a
time delay as well.

B. Properties of Iterative Learning Control

Iterative Learning Control is a data-driven control method-
ology that aims to enhance performance by learning from
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previous experiments [16], [22]. Data from the previous
experiment, or trial, is used as feedback signal to design
a feedforward trajectory for the next trial. It is particularly
suited for repetitive control tasks, where the same reference
has to be tracked for many consecutive trials. At each trial,
the residual error is used together with a dynamic model of
the system to design an improved feedforward trajectory for
the next trial. As such, ILC is particularly suited for processes
which:
I1 Are repetitive, having to follow the same or similar

reference trajectories each time.
I2 Have controlled variables that are difficult or costly to

measure in real-time for feedback control purposes.
I3 Are presently controlled with a strong feedforward com-

ponent and little or no feedback, for example because
time delays limit the feedback performance.

I4 Have a reasonably accurate (linearized) dynamic model
describing the input-output behaviour of the process.

I5 Have limits in both actuator and states, which can be
included [23] in the ILC problem.

ILC characteristics I1-I5 are well-aligned with tokamak
control issues and constraints T1-T5 mentioned above, mo-
tivating the use of ILC in tokamak control problems. In the
remainder of this paper we will present the application of
ILC to the special case of current profile diffusion. Other
examples will be discussed in Section VII.

III. MODEL AND SIMULATION OF TOKAMAK PLASMA
CURRENT DIFFUSION

In this section we present a dynamical model of tokamak
plasma current diffusion and introduce the two variables
which will be controlled in the examples shown in the later
sections. This model will also be the basis for deriving a
linearized model for the system that will be used for ILC,
as we shall see in Section IV.

A. Model for tokamak profile dynamics

Due to the (spatially varying) resistivity of the plasma,
the electrical current will naturally distribute itself in such
a way that the electric field becomes constant inside the
plasma. This occurs on the so-called resistive time scale
which ranges from hundreds of milliseconds for present-day
tokamaks such as TCV to hundreds of seconds for large
tokamaks such as ITER. To model the plasma evolution more
accurately, this equation is solved together with an equation
for the energy transport. This evolves on a faster timescale
than the flux diffusion and is nonlinearly coupled to the latter.

The two coupled equations can be written as:

k1
∂ψ

∂t
=

∂

∂ρ
k2
∂ψ

∂ρ
+ k3 +

nu−1∑
i=1

ku,iui (1)

c1
∂Te
∂t

=
∂

∂ρ
c2
∂Te
∂ρ

+ c3 +

nu−1∑
i=1

cu,iui (2)

This represents two diffusion equations for the distributed
variables ψ and Te, which are, respectively, the poloidal
magnetic flux, and electron temperature as a function of

the 1D radial coordinate ρ = ρtor. This radial coordinate
is related to the square root of the toroidal magnetic flux
enclosed by surface of constant poloidal flux (see e.g. [24]
for a more detailed treatment), ρ = 0 corresponds to the
plasma core and ρ = 1 at the value at the plasma edge. The
quantities k1, k2, k3, c1, c2, c3 are functions of ρ, which are
nonlinearly dependent on the variables ψ and Te.

The externally driven current density and applied heating
(e.g. by plasma auxiliary heating systems) are modeled using
ku,i and cu,i, which are also a function of ρ, Te and ψ,
that determine the spatial localization of each of the nu − 1
auxiliary actuators. The input ui = Paux,i ∈ R corresponds
to the power of the ith heating and current drive actuator.
As a boundary condition for (1), the total plasma current Ip
is prescribed at the outer edge of the plasma as ∂ψ

∂ρ

∣∣∣
ρ=1

=

kIpIp where kIp is a known scalar. Therefore Ip(t) can be
viewed as an additional input to the equation and can be
used to control the time-behaviour of ψ(ρ, t), and the system
can be recognized as having nu inputs in total. A Dirichlet
boundary condition is prescribed for (2) as Te|ρ=1 = Te,1.

Models of this type have been used in the past for
designing and testing feedback controllers (e.g. [10], [8])
and observers [21] for the current density profile.

B. Controlled variables

The controlled variables of interest for the present study
are the q profile and the internal inductance `i. The q profile
is a function of ρ, defined as:

q(ρ) = 1/ι(ρ), where ι =
1

2Φb

∂ψ

∂ρ
(3)

and Φb ∈ R is a known scalar representing the total toroidal
flux enclosed by the last closed flux surface. Note that while
q is a nonlinear function of ∂ψ

∂ρ , its inverse ι is linear in ∂ψ
∂ρ ,

so ι will be controlled instead of q, for convenience.
The internal inductance `i ∈ R is defined as

`i(t) =

∫ ρb

0

c`

(
∂ψ

∂ρ

)2

dρ (4)

Where c`(ρ) is a known function. Clearly `i is a nonlinear
function of ψ(ρ, t).

C. Numerical solution

Since the system of equations (1)-(2) is numerically stiff,
specialized simulation codes are necessary to solve the
coupled system. One such code, that we will use in this
paper, is RAPTOR [14], a code developed purposely for real-
time control applications. One of its main advantages is that
it returns not only the solution (in time) of the nonlinear
PDEs, but also the local linearization around the nonlinear
trajectory. in this code, (1)-(2) are discretized in space using
finite elements and in time using a backwards Euler scheme,
yielding a set of implicit discrete-time ODEs which are
solved using a Newton method.
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IV. ILC PROBLEM FORMULATION FOR LTV SYSTEMS
AROUND A NOMINAL TRAJECTORY

We formulate the ILC problem in discrete-time as de-
termining the variation ∆u in the feedforward input to be
applied at the next trial, that minimizes a cost function
J ∈ R, subject to constraints:

∆u = arg min
∆u

J, subject to A∆u ≤ b (5)

Each term will be discussed in the remainder of this
section. We shall first construct an expression for J involving
the expected error on the next trial as a function of the change
of input at the next trial.

A. Linearized expression for the error on the next trial

A linearized time-varying (LTV) model is constructed
around a nominal solution of the nonlinear system (1)-(2)
with output equation (3) or (4). Details of the linearization
procedure and its validation can be found in [8].

Let uok ∈ Rnu ∀ k ∈ [1, . . . , N ] be a (time-discretized)
input vector sequence for the spatially discretized model
derived from the PDE model, and let xok and yok be cor-
responding state and output vectors. We can then derive an
LTV model for the system around this nominal trajectory by
defining uk = uok + δuk, xk = xok + δxk and yk = yok + δyk,
and writing:

δxk+1 = Akδxk +Bkδuk (6)
δyk = Ckδxk +Dkδuk (7)

Now, let the vectors for each k be stacked into a single vector
as ȳT = [yT1 , y

T
2 , . . . , y

T
N ]T ∈ RNny , and analogously for ū,

δȳ, δū, δȳo and δūo. Then one can easily show that

δȳ = T δū+Dd (8)

in which T ∈ RNny×Nnu is a matrix with only the lower
triangular elements populated, D ∈ RNny×nd is a matrix
describing the effect of a disturbance vector d ∈ Rnd , that
is modeled as a constant, on the output. We also assume
a constant initial condition δx0 that is included in d for
simplicity. T and D can be constructed from the system
matrices Ak, Bk, Ck, Dk and from knowledge of the
disturbance model. Defining the references for ȳ as r̄, let
the error vector for the jth trial be

ēj = r̄ − ȳj . (9)

Using ȳj = ȳj,o + δȳj and (8) one can write

ēj = r̄ − (T δūj +Dd)− ȳj,o (10)

from which we can write the expected error at the next trial
as a function of ūj+1:

ēj+1 = r̄ − (T δūj+1 +Dd)− ȳj,o (11)

Substituting r̄ from (10), we see that

ēj+1 = ēj − T (δūj+1 − δūj) (12)

and the effect of the constant disturbances and the nominal
output trajectory cancel. Since ūj and ēj are known after

the jth trial, (12) effectively gives the relation between the
error expected at the next trial ēj+1 and the next input
trajectory perturbation δūj+1. Naturally the equality holds
only if the perturbation dynamics is exactly described by the
LTV model, otherwise the equality will be only approximate.
Note also that one has the choice whether to update the
LTV model based ūj,o = ūj , which will likely be more
accurate, or to keep the nominal LTV model determined with
the original feedforward signal uj,o = ū0 ∀ j.

B. Cost function and constraints

The ILC algorithm is formulated as aiming, at each trial,
to compute the (total) feedforward trajectory for the next
trial: ūj,o + δūj+1 that minimizes a weighted norm of ēj+1,
plus some regularizing terms that depend on δūj+1. This is
all written in the cost function:

J =‖Weē
j+1‖22 + ‖Wu(ūj,o + δūj+1 − ū0)‖22

+ ‖W∆u(δūj+1 − δūj)‖22 (13)

Each term will be discussed in detail below:
P1 Penalty on (linear combinations of) the error at the next

iteration. A typical choice is We = weINny
where INny

is the (Nny)× (Nny) identity matrix.
P2 Penalty on the feedforward correction, attempting to

maintain the feedforward input close to the original
trajectory ū0 or penalizing its time derivative. Wu is
typically structured as wuINnu

+ wduD where wu ∈ R
and wdu ∈ R are scalar weights and the matrix D is
structured such that Dū ≈ ∂ū

∂t , typically by a finite
difference approximation.

P3 Penalty on the variation from one iteration to the next.
This is particularly important for the problem studied
here where an LTV model is constructed around an
nonlinear trajectory, as taking too large steps could bring
the system away from the region of validity of the
linearised model (12). An adequate choice of this term
is important to improve the convergence speed of the
procedure, to achieve robustness against trial-varying
disturbances and noise, and to reduce the required trials
to achieve a given performance.

Substituting (12) and rewriting the equation in terms of
∆ūj = (δūj+1 − δūj) and ūj0 = ūj − ū0 yields

J =‖We(ē
j − T ∆ūj)‖22 + ‖Wu(ūj0 + ∆ūj)‖22

+ ‖W∆u(∆ūj)‖22 (14)

The cost function can be rewritten as a quadratic function
of ∆u:

J = ∆ūj>H∆ūj + f>∆ūj + c (15)

Where from (14) we can identify:

H = T >W>e WeT +W>u Wu +W>∆uW∆u (16)

f = −2ēj>(W>e WeTk) + 2ūj0T (W>u Wu +W>g Wg)
(17)

c = ēj>W>e Weē
j + ūj0>(W>u Wu +W>g Wg)ū

j0 (18)
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Constraints on the input trajectories, including limits on
absolute values or ramp rates may be expressed as Aj∆ūj ≤
bj , where any nonlinear constraints have to be linearised
around the jth trajectory first.

If there are no inequality constraints, then an analytical
solution to the problem (5) exists. In case of inequality con-
straints, this minimization problem can still be solved rapidly
and efficiently using well-established numerical algorithms
for QP problems [25], and global convergence is always
guaranteed if H is positive definite. In practice, choosing
the weighting matrices in the two last terms in (16) as
positive diagonal matrices ensures positive definiteness of
H , so this can always be satisfied. Solving (5) numerically
for the system explored here the number of to-be-optimized
control input parameter is of order ∼ 100, takes no more
than a few seconds on a modern CPU.

V. APPLICATION OF ILC TO q PROFILE CONTROL
SIMULATIONS FOR THE ITER TOKAMAK

For tokamak discharges it can be important to establish a
desired q profile at the end of the ramp-up of the plasma.
Here we will show simulations of q profile control using
ILC for the ITER tokamak, demonstrating that ILC is able
to recover a nominal q following perturbation of the nominal
model used to determine the desired, reference q profile.

A. ILC cost function and constraint definition
The ILC problem is formulated in terms of the inverse of

the safety factor profile, ι = 1/q. This quantity is discretized
on a radial grid of 31 points. The error is defined as

ek = ιref − ιk (19)

where ιk ∈ R31 is the ι(= 1/q) profile sampled at the 31
radial locations and ιref is a reference q profile.

For this demonstration, we aim to achieve small ek at
the end of the plasma current ramp-up phase at t = 140s.
The ILC cost function is written as (13), where the error
weight matrix We is chosen such that only the error at t =
140s is weighed. The other cost function weight matrices are
constructed as follows: W∆u = w∆uI with w∆u = 1.0 ×
10−8, Wu = wduD with wdu = 1× 10−7 and D defined as
in Section IV-B. We hence impose a penalty on the change
of feedforward signal on each iteration, as well as the time
derivative of the resulting total feedforward signal. The small
values of the weights are caused by the scaling of the input
parameters (typically of order 106) with respect to the outputs
(typically order 1).

Given 4 actuator inputs and 31 controlled variables, we
are dealing with a MIMO system with more outputs than
inputs. For this reason alone it will therefore not be possible
to control the error exactly to zero (even if the input weights
are set to zero), but only to some nonzero (global) minimum.

The constraints are defined for the maximum and mini-
mum plasma current and total auxiliary power values:

3.5MA ≤ Ip ≤ 13MA (20)

0MW ≤
∑
i

Paux,i ≤ 37MW (21)

Additinally, the start and end values of the actuators are also
kept fixed. Other constraints on e.g. actuator ramp-rates could
trivially be added, but are not considered here.

B. Procedure and simulation results

First, a feedforward-controlled simulation of the ITER
plasma profile evolution during plasma ramp-up is carried
out by solving equations (1)-(2). The inputs to the simulation
are the time trajectory of the plasma current Ip(t) ∈ R and
of Paux,i ∈ R, i ∈ [1, . . . , 3] the power to three sources
of auxiliary heating and current drive, corresponding to ui
in (1)-(2). The simulation parameters used in this study are
described in detail in [15]. For the present purposes, this
simulation amounts to an optimized ramp-up simulation in
which a nominal desired q profile is obtained.

When the obtained actuator trajectories are used in the true
tokamak, the result will not exactly match the simulation due
to inevitable model mismatches. In our case, we simulate
the model mismatch by varying the coefficients of the
thermal transport, resistivity and current drive efficiency in
the simulation model. As can be observed in Figure 1, this
yields a different q profile at the end of the ramp-up (bottom
left, red), at t = 140s, than the nominal simulation (black).
This is also due to the lower Te profile, as is visible in
Figure 1 (bottom-right, black vs red curve).

We then apply ILC control to recover the desired nominal
q profile, iteratively adjusting the time trajectories of Ip, and
PEC,i. The LTV model that is used in the ILC algorithm
is updated at each trial using the previous input trajectory.
The resulting trajectories after 5 iterations are also shown
in Figure 1 (blue). The bottom-left panel shows that the q
profile indeed converges close to the nominal reference. The
actuator time traces (top panels) show that this is achieved
by changing the Ip trajectory and also by adjusting the power
in each of the EC sources. The control focuses on achieving
the correct q profile and does not change the temperature of
the plasma, as this is not included as a controlled variable.
This is shown in the bottom-right panel.

Figure 2 shows the evolution of the error over each trial.
The profile error of ι− ιref is shown (left) as well the error
norm Je = ‖Weē

j‖22 (right) for each iteration. This shows
good convergence after already three iterations, with minor
improvements in iterations 4 and 5. Clearly, is not possible to
obtain a truly zero error because there are more controlled
variables than actuators and because the derivative of the
trajectory is also penalized.

VI. EXPERIMENTAL APPLICATION OF ILC TO INTERNAL
INDUCTANCE CONTROL IN THE TCV TOKAMAK

A. Problem formulation

This section describes an experimental demonstration of
control of the internal inductance (`i) by varying the total
plasma current Ip in the TCV tokamak [26]. The internal
inductance is a single-parameter measure of the distribution
of electrical current inside the tokamak as defined in (4).
High `i corresponds to a current density distribution peaked
in the center of the plasma, and too high `i can have
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detrimental effects on the plasma vertical position stability
[27]. Low `i corresponds to a broad current distribution, and
if `i is too low, internal magneto-hydrodynamic instabilities
are more likely to occur [1].

The internal inductance can be controlled in several ways,
one of which is via the time evolution of Ip, which is itself
feedback controlled by time-varying currents in external
magnetic coils. We will show that using ILC we can obtain
a desired `i trajectory in a few (5) trials.

B. Choice of weights and constraints and ILC procedure

The chosen weights are shown in Figure 3. As can be seen,
the weights are constructed so as to penalise deviations of the
current in the initial phases of the experiment with respect
to the initial trajectory, and the change for each successive
trial.

No constraints were imposed for these experiments, in-
stead the proposed Ip trajectory was manually inspected at
each trial, and was found to always remain within operational
limits without the need for explicit constraints.

The experimental procedure is outlined below:
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Fig. 3. Weight functions used in TCV experiments for li control. The error
is weighed less in the regions close to the end of the region of interest,
while actuator variations are penalized more, to discourage sudden steps in
the input at the beginning of the ILC-controlled phase. A constant weight
is applied to the variation of Ip between trials.

1) First, a plasma discharge was executed with a pre-
programmed evolution of Ip, shown in blue in (Figure 4,
top panel, blue). The resulting `i trajectory was evalu-
ated by processing measurements in the standard post-
shot plasma state reconstruction algorithms, in particular
the LIUQE equilibrium reconstruction code [28].

2) Then, a new reference `i trajectory was chosen (Fig. 4,
second panel, black line)

3) We then construct the LTV model describing the re-
sponse of `i(t) to changes in the input Ip(t). This
is done by first simulating the discharge by solving
equations (1)-(2) with input Ip(t) using the RAPTOR
code and then constructing the LTV model around the
RAPTOR trajectory from the Jacobians as described in
[8]. Note that no auxiliary heating power was used in
these experiments, so, in (1), u = 0 and the actuation
comes purely from the boundary condition Ip(t).

4) The ILC algorithm was run using the linearized model
from step (3) and using the error between the reference
and the obtained `i as input. Solving the optimization
problem yields an improved Ip trajectory for the next
trial.

5) This new Ip reference trajectory was used as input for
a new plasma discharge in TCV, which yields a new `i
trajectory.

6) Return to step 3.
Steps 3–6 were repeated a total of four times giving five
trials in total including the original run.

C. Results

The experimental time traces for each trial of the ILC
control are shown in Figure 4. The top panel shows the
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actuator trajectory Ip(t), the second panel is the controlled
output `i(t). Note how ILC generates a progressively dif-
ferent Ip trajectory and how the `i trajectories are seen to
converge close to the (black) reference trajectory. The lower
three panels in Fig. 4 show the error, squared error, and
time integrated square error, respectively. Clearly, the error
decreases significantly between the first to the last iteration.

The evolution of the weighted error, per trial, is shown in
Figure 5. As can be observed, the control error decreases on
all trials but one. This might be due to model inaccuracies
or trial-varying disturbances, and in any case does not
necessarily entail that J itself is non-monotonic. Some error
remains in the last phases of the experiment, but continuing
this ILC procedure for further trials would most likely have
reduced this error as well.

VII. OUTLOOK

To conclude this paper, we mention three other tokamak
control problems which may benefit from use of ILC.

• Plasma breakdown control – tokamak plasmas are ini-
tiated by generating a combined electric and magnetic
field configuration that causes breakdown (ionization)
of the gas in the vacuum chamber. The required cur-
rents in the surrounding coils can be pre-calculated,
but uncertainties exist in the model. ILC can be used
to iteratively improve the breakdown conditions by
yielding a more suitable magnetic configuration at the
desired breakdown time.

• Particle density control – this crucial parameter of a
plasma discharge is regularly controlled in feedback
in some devices, but often still in feedforward for
many types of plasmas due to lack of reliable feedback
controllers that work in all operating regimes. In some
cases, time delays and nonlinearities in the gas valve
actuators also cause problems in applying feedback
control. Therefore, the density is often seen to evolve
slightly during the discharge in response to disturbances
and is often a primary reason why discharges have to
be repeated.

• Radiation and heat flux control – The amount of ra-
diated power can be controlled by injecting heavier
elements (‘impurities’) into the plasma. This, and other
factors like the magnetic field configuration play a role
in the eventual heat flux reaching solid surfaces near the
plasma. This is a relatively new topic of study, where
some feedback control solutions have started to appear
[29] but few are routinely used. Also here, lack of good
real-time measurements of the controlled variables often
limits the development of feedback control, and ILC
could play a role in establishing appropriate feedforward
signals iteratively.

We also see great potential in using rational basis function
ILC [30] where ILC techniques are used to iteratively con-
sruct a feedforward controller that can handle trial-varying
reference signals as well.
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Fig. 4. Sequence of TCV shots converging to reference li trajectory.
Sequence of Ip trajectories (first panel) and corresponding li trajectories
compared to reference (black) (second panel). Weighted error in time (third
panel), square error (fourth panel) and time-integral of weighted square error
(firth panel) show that the error decreases with each successive trial. The
5th trial (cyan) almost entirely overlaps the reference until t = 0.6s. Further
improvement might be possible with further trials.

VIII. CONCLUSIONS

This paper has explored the use of a batch-to-batch control
technique for tokamak plasma current density profile for
the first time. Successful results from both simulations and
experiments applying Iterative Learning Control were shown.

End-point control of a distributed quantity closely related
to the current density profile, the safety factor profile (q),
is demonstrated for simulations of ITER. It is shown that,
also within 5 discharges, the q profile at the end of the
simulation converges to values close to nominal reference
profile. Control of the time-trajectory of a scalar parameter
of the current density profile, the internal inductance, was
demonstrated in experiments on the TCV tokamak. It was
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Fig. 5. Square error
∑

k ‖Week‖22 for successive trials, labeled according
to the TCV shot number. Non-monotonic decrease of the error may be
caused by the nonlinear nature of the system or by trial-varying distrubances,
but the overall procedure is seen to converge.

shown that a reference trajectory for the internal inductance
can be accurately tracked within 5 iterations by varying the
time-evolution of the total plasma current. Both cases used
LTV models linearised around the trajectory of the nonlinear
model to construct cost function to be solved for each trial.

This work represents an interesting new and challenging
application of ILC beyond its usual application to LTI sys-
tems, involving complex PDE-based models and linearisation
around a nonlinear trajectory.

Based on the simulation and experimental results, it also
seems that ILC is a promising tool for future tokamak
experiments, for a variety of control problems other than
current density profile control. It will help to minimize
the degree of trial-and-error and bridging the gap between
feedforward and feedback control in existing and future
devices, cutting costs and saving valuable experiment time.
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