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1.  Introduction

The next generation experimental tokamak, ITER, is currently 
being built. This device is larger than its predecessors [1], which 
gives rise to multiple challenges, one of which is plasma den-
sity control. Density control is usually, in present day devices, 
achieved by feedback control of the gas valve openings based 
on the deviation between the requested and measured plasma 
density [2]. However, in ITER, the response of gas valves 
might be too slow for feedback control. Firstly, the valves are 
positioned far away from the vessel (i.e. approximately 20 

m) delaying the response by the travel time through the pipe, 
being in the order of a second or more. Secondly, it is more 
difficult for neutral gas particles to penetrate the hot ITER 
edge plasma, having edge temperatures in the order of 1 keV, 
further reducing the effectiveness and response of gas fuelling 
[3, 4]. Pellet injection is available as a second actuator which 
directly fires pellets of frozen fuel into the plasma, which pen-
etrate further [5]. However, since these pellets are fast, they 
lead to localized density increase, and they may not yet be able 
to ablate in the early phase of the shot where the temperature 
and density are still low. Beside these two key actuators, other 
factors influence the L-mode density evolution, including the 
vacuum vessel pumps and the presence of the plasma facing 
components. Optimal preparation for an ITER shot can only 
be achieved by accurate modelling of for example the ramp-up 
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Plasma density control for next generation tokamaks, such as ITER, is challenging because of 
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might be too slow for feedback control. Both pellet fuelling and the use of feedforward-based 
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(ILC) is proposed to determine optimal feedforward actuator inputs based on tracking errors, 
obtained in previous shots. This control method can take the actuator and density limits into 
account and can deal with large actuator delays. However, a purely feedforward-based density 
control may not be sufficient due to the presence of disturbances and shot-to-shot differences. 
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In simulations, it is shown that this combined controller strategy is able to achieve good tracking 
performance in the presence of shot-to-shot differences, tight constraints, and model mismatches.
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phase. Nevertheless, such preparations are only meaningful if 
the actual achieved density tracks the modelled one, avoiding 
too large density oscillations or deviations from the desired 
density evolution. As such, density control is especially rel-
evant for larger devices like ITER.

The topic of this paper is the control of the particle density in 
ITER despite the issues mentioned above. This controller must 
be able to deal with the large time scale separation in actuators 
(pellets and gas), fast transitions and changes in dynamics of 
the plasma during the plasma ramp-up, and complications in 
the modelling of plasma fuelling. It will be shown that these 
complications make simple linear feedback control alone not 
suitable for ITER. Feedforward control is needed in addition 
to feedback control to resolve the aforementioned problems. A 
well-tuned feedforward actuator command is able to act effec-
tively and is inherently non-causal, enabling corrections before 
they are needed, e.g. to inject gas in anticipation of a density 
change request. In present tokamaks, to achieve the needed con-
trol performance, the feedforward control signal is the result of 
meticulous tuning. For ITER, this is not advisable because of 
the much higher cost of a single shot compared to present day 
tokamaks. We therefore propose to use iterative learning control 
(ILC), a control method whereby the time trajectory of the actu-
ator input signals is modified from preceding experiments (all 
having the same density reference) in such a way that the norm 
of the tracking error over the period of interest is reduced [6].

This can be achieved by using the result of one trial to 
design an improved feedforward signal for the next. ILC 
therefore particularly works well for repetitive control sys-
tems, which have the same reference and perform the same 
task over and over again. ILC has been successfully applied 
to for example industrial motion systems [7, 8]. The use of 
ILC in tokamaks was proposed in [9], where its application 
to current density profile control is discussed. Furthermore, 
characteristics of tokamaks that make ILC particularly suited 
for tokamak plasma control are also highlighted. In particular, 
tokamaks are essentially repetitive systems as well, since they 
have to be operated in shots. Even though the shots differ due 
to different experiments, many parts of each shot (including 
the ramp-up) are often the same. Also, many quantities will be 
controlled in feedforward, in particular in the early operational 
stages of a new device due to lack of real-time measurements, 
or because feedback controllers have a longer development 
time. The approach can also be beneficial when restarting a 
device after a substantial upgrade. In ILC, actuator and oper-
ational constraints can be easily implemented, which is not 
the case for feedback control design. It is important to recog-
nize, however, that even for two identically prepared tokamak 
shots, each shot will be slightly different due to for example 
different wall conditioning. Pure feedforward based control 
cannot deal with these non-repetitive disturbances. Feedback 
control is therefore necessary to deal with the possible loss in 
reference tracking performance and can work together with 
any type of feedforward, including ILC. To guarantee stability 
and feedback control performance during the whole ramp-
up, the advanced robust H∞ synthesis technique is used to 
synthesize the feedback controller [10]. With this technique, 
feedback controllers can be mathematically synthesized for 

systems with uncertainties. In figure  1 the proposed con-
troller architecture is visualized. Here, the block indicated by 
Σ denotes the tokamak, r the reference signal of the average 
density, which is taken from a DINA simulation of the ITER 
ramp-up [11], and y1 the average density that is achieved. 
The difference between this latter density and the reference 
is denoted by e1 and is fed to the feedback controller. The 
actuator signal u1 is the sum of the feedback control signal 
ufb and the feedforward control signal uff. Clearly, when only 
feedforward control is used, ufb = 0.

In this paper we will apply the mentioned controller struc-
ture to simulations of the particle density evolution expected in 
ITER, and show that this control methodology is able to resolve 
the aforementioned problems. To test our controller, we use a 
control-oriented model of the plasma particle density evolution 
[12], which has been specially updated to include issues that 
govern the particle density evolution in ITER during ramp-up.

It is important to realize that the objective of this paper 
is not to make quantitative statements about the physics of 
the density evolution in ITER and the possibility for control. 
Much of the details of wall retention, scrape-off-layer (SOL) 
and fuelling physics for ITER are still uncertain at the time 
of writing. Instead, the purpose of this paper is to show that, 
based on a control-oriented model for the ITER density evo
lution, based on today’s best guess of ITER density dynamics, 
the proposed control scheme can successfully control the 
ITER density during plasma ramp-up.

The remainder of this paper is structured as follows. Firstly, 
in section  2, a brief summary of the proposed ITER current 
ramp-up phase is given, describing its various phases, targets and 
constraints. This is followed by a brief summary of the control-
oriented model in section 3. The level of complexity in this model 
is aimed to be sufficient to capture all relevant fuelling dynamics 
needed to properly assess ITER density control during the ramp-
up phase. Then the controller design is discussed and justified 
in sections 5 and 6, after which simulation results showing the 
performance of the controller are presented in section 7.

2.  Description of the ITER plasma ramp-up 
scenario

2.1.  DINA simulations of plasma ramp-up phase

During the ramp-up phase, the plasma current, Ip, and den-
sity, n, are increased, preparing the plasma to be heated to 

Figure 1.  Controller architecture in the standard tracking loop 
format. A feedback controller and a feedforward controller, 
constructed using robust control (RC) and ILC respectively, work 
together to achieve control performance.
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the temperatures needed to achieve thermo-nuclear fusion. 
Density control is critical to consistently achieve a reliable 
and stable ramp-up phase, since variations in the density cause 
variations in the temperature evolution, which in turn cause 
a different current density profile evolution, which may have 
important consequences for the confinement quality and MHD 
stability. Towards the end of the current ramp-up, a minimum 
density should reliably be achieved that allows for example 
the use of neutral beam injection (NBI) heating, and the trig-
gering of the high-confinement mode (H-mode), required for 
achieving the ITER burn conditions.

DINA simulations have been performed to model the 
plasma evolution during the ramp-up [11]. The results of those 
simulations will be used as starting point to tune a control-
oriented model. The time-evolution of key parameters of the 
simulation are shown in figure 2. The following features are 
relevant: at approximately 17s, the plasma configuration is 
diverted, and the end of the ramp up coincides with the L–H 
transition. At this point, having Ip = 15 MA, a density of 
4 · 1019 electrons/m3 is achieved. Note that the DINA code 
does not self-consistently solve the density profile evolution. 
In the remainder of this paper the density will be scaled such 
that navg,20 = navg/(1 × 1020 (m−3)) particles.

Although the DINA model of the ramp-up assumes a steady 
increase of the density (together with the plasma current), this 
assumption may not be easy to achieve. Firstly, as we will see 
in this paper, it will depend on the capabilities of the density 
control system. Secondly, a number of physics effects may 
cause perturbations. For example, right after breakdown the 
cold and low density plasma may be influenced strongly by 
the wall, which could act as a particle pump, yielding a drop 
in density [13]. Furthermore, the change from a limited to 
diverted configuration will alter the pumping of the plasma. 
Finally, as the (edge) temperature increases during the ramp-
up, it may be more and more difficult for particles to be ion-
ized deep enough into the plasma to be effective for fuelling. 
This effect, depending on the details of the transport of neu-
trals and ions in the plasma edge, may influence the fueling 
of ITER plasmas significantly. Therefore, in the remainder of 

this paper, we aim to include these complications in the con-
troller design and testing.

2.2.  Density limits

In this section, the plasma density limits during ramp-up 
will be specified. As this topic is still being investigated, the 
limits shown here are solely for the purpose of demonstra-
tion, and do not necessarily reflect the expectations for ITER. 
A lower limit on the density is set by the possibility of error 
field penetration. This low density limit is determined by the 
level of error fields due to the slight misalignment in the field 
coils, which may only be revealed after construction, but also 
depend on the success of the correction coils that are going to 
be used at ITER [14]. Hence, for ITER this limit is not pre-
cisely known yet. During limiter plasma operation, an upper 
limit for edge fuelling is set by a radiative collapse. When the 
plasma is diverted, an upper limit is set by the divertor detach-
ment, which is to be avoided during initial operation. Both 
upper limits are closely linked to the density in the scrape-
off-layer (SOL) or far outer layer of the plasma [15]. During 
the ramp-up phase these upper limits are usually lower than 
the Greenwald density, nGW, the well-known upper limit for 
densities in tokamaks [16]. For simplicity the lower limit is 
chosen to be 0.2nGW. The Greenwald density limit is only a 
function of plasma current Ip (MW), and is given by

nGW =
Ip

πa2 ,� (1)

where a is the tokamak minor radius in meters.
The precise physics mechanisms of upper limits on the 

plasma density is still being investigated [17, 18]. For now, in 
this paper, we assume the upper limit is a simple fraction of 
the Greenwald density, being nup = 0.45nGW throughout the 
ramp-up. It can be refined in the future as the physics behind 
this constraint are better understood. It is generally acknowl-
edged that these physical density limits do not hold for pellet 
injection [5]. Therefore, in this work, we allow minor density 
violations due to pellets. In figure 3 the reference plasma den-
sity and both density limits are visualised.

3.  Control-oriented model for the particle density 
evolution

3.1.  Description of the control-oriented model

To assess the density control during the ramp-up a dynamic 
model of the plasma density evolution in response to various 
fueling actuators is needed. The model should capture the key 
aspects that will affect the evolution of the density. However, 
for a preliminary control study it is not necessary to model 
many of these physics processes in great detail, but it is more 
important for iterative controller design that the model is fast 
enough for rapid simulation (a few minutes per run at most). 
Furthermore, the model structure should be suitable for con-
troller design. Here, a recently developed three inventory 
model approach [19] containing a plasma, wall, and vacuum 
inventory is used. This model was originally developed to 

Figure 2.  The evolution of the plasma current, its volume, and 
plasma configuration during the applied ramp-up scenario.
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improve the density control in TCV and ASDEX Upgrade 
[12]. For a detailed description of the model, including the 
model equations, we refer the reader to [12]. For the work 
presented in this paper, the model was updated to capture ele-
ments relevant specifically for ramp-up. For example, taking 
into account the fuelling of the plasma after breakdown, the 
possible impact of wall pumping and the creation of a diverted 
plasma during the ramp-up. The loss of fuelling efficiency 
with the increase of edge temperature, has also been included. 
The model is heuristic and has tunable parameters that can be 
adjusted to yield the density evolution one expects in ITER. 
However, since there is uncertainty in modeling the mentioned 
effects, it is difficult to decide which values to choose for these 
parameters. Therefore, many parameters can only be guessed 
based on experience, or extrapolated from data available for 
existing machines. Inevitably, there will be significant uncer-
tainty in these parameters. The control methodology that will 
be introduced in section 5 and section 6 is therefore designed 
to guarantee performance in the presence of uncertainties, by 
taking them into account in the design of the controller.

In figure 4, schematic outline of the model with three inven-
tories is given, including fluxes between each particle reservoir. 
There are three inventories that can contain particles: the plasma, 

the vacuum vessel, and the wall. The main sources and sinks to 
the entire model are: the neutral gas fuelling by means of gas 
valves, fuelling with pellets and the pumping of the vacuum.

3.2.  Inventory description

The interaction between the three inventories can be described 
by a set of coupled differential equations. The inventories 
interact by exchanging particles via various physics pro-
cesses, as shown in figure 4. Neutrals in the vacuum can be 
ionized and enter the plasma (ionization), ions in the plasma 
can recombine, neutralize and exit the plasma to the vacuum. 
Neutrals can move from the outer plasma, the scrape-off layer 
(SOL) either to the wall (SOL-wall) or the vacuum (SOLe 
flux) and from the wall they can recycle back into the vacuum 
(recycling). The vacuum and wall are regarded as zero dimen-
sional, but the plasma is described by a 1D partial differential 
equation for the electron density profile. The details on how 
these processes are modelled can be found in [12]. A summary 
of the parameter values is given in the appendix. Two exten-
sions relevant for ITER or the plasma ramp-up are discussed 
next.

3.3.  Neutral screening effect

The decrease in effectiveness of gas fuelling with increasing 
edge temperature is modelled in an ad-hoc fashion. An ioniz
ation deposition function Λiz(ρ) (as a function of normalized 
toroidal flux label ρ) is chosen to model the distribution of 
the neutral density decay in the plasma and the temperature-
profile dependent reaction rate. It changes in time as a func-
tion of the ionization depth λiz. Here, it is assumed that λiz 
scales with edge temperature variations Te,b − Te,b0 around a 
nominal edge electron temperature Te,b0:

λiz = λiz,0 + kiz,T (Te,b − Te,b0) .� (2)

For now, the proportionality kiz,T is chosen to be 
−1 · 10−4 eV−1. The mean ionization depth λiz,0 is intro-
duced in section 7.

3.4.  Plasmaless model

Gas puffing prior to plasma breakdown is modelled by only 
taking into account the wall and vacuum inventories. Wall 
outgassing, gas puffing, and pumping can affect these inven-
tories. These processes are modelled by removing the plasma 
dependent terms in the relevant inventory equations [12].

3.5.  Model of the gas supply system

For ITER, the gas supply system consists of 21 m of pipe 
between the valve and the vacuum vessel, with mass flow con-
trolled (MFC) valves. The gas supply is limited to 7.36 × 1022 
particles/s, corresponding to 200 Pa m3 s−1. The MFC system 
is modelled by a simple first order dynamical system with a 
constant time delay of 0.5 seconds and rise time of 0.4 sec-
onds. Its transfer function Pg(s) is given by:

Figure 3.  Average density evolution (1 scN = 1 · 1020 particles) 
including basic constraints in the ramp-up scenario.

Figure 4.  Considered particle fluxes in the three inventory 
model. The plasma is modelled in 1D, whereas vacuum and wall 
inventories are 0D. Pellet and Gas act as inputs to the system, the 
pumping as a sink.
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Pg(s) = e−0.5s 1
0.4s + 1

.� (3)

3.6.  Pellet fuelling model

The pellet deposition is modelled as depositing particles of 
fixed size on a fixed location in the plasma. For simulations, 
the pellet size is set to 6 × 1021, corresponding to the theor
etical size [20]. Furthermore, the pellet system has a constant 
delay of 0.2 s. The pellet model has a maximum delivery fre-
quency, but we assume a 100 percent reliability in the delivery 
of pellets by the launcher. The ITER pellet injection system 
cannot use the pellet velocity as control parameter to optimize 
the pellet ablation. The pellet size, however, can be changed by 
20% on a time scale of roughly 3 s. Since this work presents a 
first control assessment, this is not included in the pellet model.

3.7.  Model input and outputs and discretization

Galerkin projection yields an ordinary differential approx
imation of the partial differential equation system described in 
[12]. The vector [Γvalve Γpellet]

T  acts as inputs u to the model, 
having nu entries. The only controlled output of the system is 
the volume averaged density, which is a linear combination of 
the internal states [12]. As the underlying model is 1-dimen-
sional, possible future outputs like the separatrix density (nec-
essary for more elaborate density constraints) can be easily 
implemented. For digital implementation and computer simu-
lation, the model is discretized in time on a time grid having nt 
grid points. In the following, discrete representations of inputs 
and time are denoted by subscript k.

4.  Simple control applied to ITER density tracking

As anticipated in the introduction, simple linear (e.g. PID) 
controllers will not suffice for density control in ITER. In 

this section, we illustrate the shortcomings of these control-
lers in control-oriented simulations of ITER ramp-up using 
the model presented in the previous section. In figures 5 and 6 
two simulations are shown with two different controllers: one 
PD controller and one PID controller with anti wind-up. Anti 
wind-up is a technique that prevents actuator saturation due 
to the integral action of the controller. Both controllers aim to 
control the density evolution using solely gas injection. The 
input of the controller is the tracking error, which was defined 
in figure 1. The controller needs to reduce this error, and by 
doing so the tracking performance is increased.

Clearly, the time delay results in insufficient tracking per-
formance a few seconds after breakdown for both controllers. 
The PID-controller performs the best early in the ramp-up, 
but has the largest error at the end even though anti wind-
up is applied. Both controllers cause density oscillation in the 
early ramp-up. This performance reduction of a controller in 
the presence of delay is a common effect [10]. Reducing the 
controller gain helps to resolve these oscillations, but in this 
case, lower gains do not achieve sufficient performance, and 
violate the lower density limit. Additional pellet fuelling can 
only help to resolve this issue after a sufficiently high density 
and temperature is achieved, which is too late to prevent den-
sity limit violations in the early ramp-up.

5.  Iterative learning control

5.1.  Introduction to ILC

Iterative learning control provides a means to increase per-
formance for complicated, repeated tasks [6]. In figure 7, the 
basic structure of an iterative learning control scheme is visu-
alized. In this figure, a standard feedback interconnection of a 
plant Σ and controller K can be seen. The system Σ denotes the 
true system, i.e. the real tokamak, see figure 1. Upon carrying 
out the first experimental trial, this results in an error signal 
e1(t) in the time domain. Then, a new feedforward signal for 
the next trial (2) is designed off-line based on this error. This is 

Figure 5.  Tracking evolution for a PID controller with anti-windup, 
and a PD without. Clearly, performance is insufficient for both 
controllers. The delay of the gas supply system limits the achievable 
performance, yielding either oscillations or a too slow response. 
The integral action of the PID controller results in a large error at 
the end of the ramp-up, even though anti-windup is applied.

Figure 6.  Detail of post-breakdown tracking performance for two 
different feedback controllers. Clearly, both controllers are too slow, 
and both controllers cause oscillations. The PID controller with anti 
wind-up performs reasonably well before the switch to a diverted 
plasma.
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done using a quadratic programming (QP) algorithm, as will 
be explained later. In this paper, we will use so-called optimal 
ILC, where the change in each new feedforward signal is the 
optimizer of a (constrained) optimization problem [9]:

∆�u = argmin
∆�u

J(∆u)

s.t. Aineq∆�u � bineq

Aeq∆�u = beq.

� (4)

Here, the vector �u  is the complete trajectory of the input intro-
duced in section 3, whereas ∆�u denotes the deviation from 
the previous or predefined trajectory for �u . The cost function 
is denoted by J, whereas Aineq and bineq describe the inequality 
constraints on the actuator signals. Matrix Aeq and vector beq 
contain the equality constraints. In the coming section, all ele-
ments in this constrained optimization problem formulation 
will be derived.

5.2.  Linear time varying model

To apply Optimal ILC, a reasonably accurate linear model 
is required. During plasma ramp-up the system dynamics 
change, for example due to increasing plasma current and 
decreased transport. Therefore, a simple linearization about 
one operational point would not be able to capture these 
physics sufficiently. Here, we will use the linearization of the 
previously derived density model along a suitable trajectory. 
The result will be a linear time varying model (LTV model) 
[21], which can be used to predict the variation in the output 
of the system to a change in input signal. For the nominal 

trajectory along which the nonlinear model will be linearized 
we choose the desired density evolution. Then, perturbations 
δ of the output yk, state xk, and input uk around this trajectory 
on time k can be used to write:

δxk+1 = Akδxk + Bkδuk

δyk = Ckδxk.
�

(5)

Note that the system matrices also depend on k. Next, all 
inputs on all N time points can be stacked in a single vector, 
denoted by δ�u :

δ�u =




δu1

δu2

...

δuN


 ,� (6)

and in the same fashion for δ�u , δ�y, and δ�x . Then, a state trans
ition matrix T ∈ RNny×Nnu, is used to write all outputs as a 
function of all inputs:

δ�y = T δ�u +Dx0,� (7)

where D ∈ RNny×nx  is another matrix, describing the effect of 
the initial condition x0. The matrices T  and D can be derived 
by recursively writing the output of the system [9], and can 
also incorporate descriptions of the actuator delays. With this 
LTV description, we can write for the error of the next trial

�e j+1 = �r −�y j+1 ≈ �r − (�y0 + T δ�u j+1 +D�x0).� (8)

Substituting, we can derive an expression for the predicted 
error at the next trial as a function of the change in input 
∆u = δ�u j+1 − δ�u j :

�e j+1 = e j − T ∆�u.� (9)

Note that ej is defined as the error achieved using the true 
system output and not the model. Note the difference between 
‘trials’ j, which are (simulations of) tokamak discharges, and 
time points k, which are elements in the time vector within a 
(simulated) discharge.

5.3.  Cost function derivation

The next ILC trial should aim to reduce the tracking error, 
while simultainously avoiding large changes or oscillations 
in the input trajectories. Such objectives can be achieved by 
designing a suitable cost function. This cost function contains 
the output error, which is smoothed off-line using a fourth 
order Butterworth filter [22] to discard oscillations in the 
signal due to pellet injection. It is assumed that after a shot, 
the truly achieved �navg can be recovered from measurements. 
Besides this smoothed error, the cost function also penalizes 
the input itself. Furthermore, changes in the input trajectory 
are penalized, such that the final converged input will be close 
to the original one. Otherwise the linearization might be a 
poor approximation. Each cost function term is weighted by a 
weight factor, such that the relative importance of cost func-
tion terms can be tuned:

J = ‖We�e j+1‖2
2 + ‖Wu(δ�u j+1 +�u j)‖2

2 + ‖W∆�u(δ�u j+1 − δ�u j)‖2
2.

� (10)

Figure 7.  Schematic view of the principle of iterative learning 
control. A new feedforward is calculated based on the tracking error 
of the previous trial. This process is repeated until convergence is 
reached.
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The error weighting matrix We is typically given by 
We = νeI + νsIs, where νe denotes the weight factor for the 
error. By structuring it this way, the error on each time step is 
penalized equally. A second weight factor and diagonal matrix, 
denoted by νs and Is respectively, are introduced to only penalize 
the error on certain time instances, for example the L–H trans
ition. The penalty on the control input effort is structured as:

Wu =
(
νgas νpel

)T ⊗ I,� (11)

where ν... denote the different penalties on use of gas and 
pellets. The operator ⊗ denotes the Kronecker product, and 
I ∈ RnuN×nuN . The very same structure is used for W∆�u, but 
with weights νd,gas and νd,pel. The ILC weight factors are nor
malized on the error: νe = 1. The tuning procedure is as fol-
lows: first all weights are set to zero except νd,gas, νd,pel, and νe. 
As such, a trade-off between performance and numerical con-
ditioning of the optimization problem can be obtained. Then, 
the other weights are tuned one by one to achieve their target. 
All weights are unchanged throughout the rest of the paper, 
and summarized in table 1. The error, �e j+1 can be written in 
terms of δ�u  using (9). The cost function can be written in the 
form ‖A∆�u −�b‖ by defining:

A =




WeT
W∆�u

Wu

WLHT


 .� (12)

By gathering the remainder of the cost function terms (the 
ones that do not explicitly depend on ∆�u) the following �b  can 
be derived:

�b =




We�e j

0
Wu(�u j)

WLH�e j


 .� (13)

Next, the expression 
∥∥∥A∆�u −�b

∥∥∥
2

2
 is expanded to arrive at:

J = (∆�u)T ATA︸︷︷︸
1
2 H

∆�u−2bTA︸ ︷︷ ︸
f

∆�u + bTb︸︷︷︸
c

,
� (14)

where H, f, and c denote the standard notation for quadratic 
optimization problems [23].

5.4.  Constraints

The inequality constraints consist of actuator limits, the lower 
density limit based on the Greenwald density limit, and the  

upper limits, as discussed in section 2.1. The actuator limits 
can simply be written as:

�0 � �u j +∆�u � �umax.� (15)

Where the actuator upper limits are denoted by �umax. The 
density constraints use a prediction by the LTV model and 
actually achieved density trajectories that are recovered after 
a shot. For example, for the upper limits we can write:

T ∆�u � �nup +�e −�r.� (16)

Note that as such, these constraints are also formulated in 
∆�u. Combining all constraints, the following inequality can 
be derived:




I
−I
T
−T


∆�u �




�umax −�u j

�u j

�nup +�e j −�r
−�ng,l −�e j +�r


 .� (17)

Where I denote identity matrices of the appropriate sizes, and 
�ng,l  denotes the lower Greenwald limit. Next, we implement 
one equality constraint. This constraint prevents the use of 
pellets early in the ramp-up, which was discussed in section 1. 
This constraint simply consists of a matrix that select certain 
elements of the input vector, such that the following can be 
written:

APEL,0∆�u = �0,� (18)

since if ∆�u is forced to be zero, and the nominal simulation 
does not use pellet inputs during the required time period, they 
will be constrained to zero for all consecutive shots.

6.  Robust feedback control

The ILC scheme outlined above generates a feedforward 
signal, but can not cope with shot-to-shot differences nor with 
unexpected disturbances acting on the plasma. For this reason, 
it is beneficial to include a feedback controller to compensate 
for this [10]. A feedback controller is designed using robust 

Table 1.  Cost function weights as used throughout the remainder of 
the paper.

Weight Value

νe 1
νs 0
νgas 8 × 10−6

νpel 1 × 10−5

νd,gas 7 × 10−4

νd,pel 1 × 10−3

Figure 8.  Bode diagram for two snapshots of the open loop 
transfer (KΣ in figure 7) of the LTV system without delay at the 
beginning (Σ1) and at the end (Σ4) of the ramp-up. Bandwidth and 
phase margins are indicated. The effect of the gas valve delay is 
indicated for Σ1,del, which indeed causes a steep decrease of the 
phase margin.
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control (RC) theory [10], as a first implementation only for 
gas injection. Pellets are therefore only controlled in feedfor-
ward. The robust controller is designed simultaneously for 
four different snap-shots of the LTV system along the com-
plete ramp-up using an LMI (linear matrix inequality) form
ulation of the H∞ design problem [24]. It is assumed that if 
the controller robustly stabilizes these four systems, it will sta-
bilize all systems in the LTV model. In figure 8 the Bode dia-
gram of the open loop transfer KΣ for two LTV models in the 
ramp-up is shown: The beginning of the ramp-up for Σ1, and 
the very end for Σ4. Also, the effect of the delay on system 1 is 
shown as Σ1,del. Clearly, the delay causes significant decrease 
of the phase margin. As discussed before, the large gas supply 
delay could result in destabilization of the feedback control 
system [10]. Therefore, the delay margin [25] is checked 
for all systems in the LTV model. The robust controller has 
a delay margin larger than 3 seconds for all systems in the 
LTV model. Therefore, stability of the closed loop during the 
whole ramp-up on the real tokamak system can be assumed.

7.  Controller simulations

7.1.  Introduction and proof-of-principle simulation

In this section, simulation results are presented showing the 
performance of the previously derived controllers. For this 
purpose, we define the ‘true model’ as the model (section 
3) with parameters that are assumed to corresponding to the 
real system. These parameters are not known for the control 
design. The control design uses instead a ‘control model’ 
representing our best knowledge of the true model. The true 
model has different pumping dynamics, and different values 
for the dimensionless mean ionization depth λiz,0, and the 
neutral screening proportionality kiz,T, as they are the main 
source of model uncertainty and significantly influence the 
dynamics. In table 2 the parameter variations are summarized. 
For the simulation, first, the control model is used to manually 
tune a feedforward control that results in sufficient reference 
tracking. In figure 9 it can be seen that the same feedforward, 
applied to the true model, yields a different average density 
evolution (in blue) that violates the constraints (in grey). 
Then, pure ILC, i.e. without feedback control, is applied for 
10 consecutive ramp-ups, iteratively updating the gas valve 
and pellet time waveforms. The resulting trajectory is shown 
in figure 10. Indeed, the density evolution has converged to 
the desired reference trajectory. Note that pellets cause slight 

momentarily violations of the density constraints, which is 
deemed acceptable due to their rapid diffusion: The algorithm 
designs and assumes a constant inflow of particles due to pel-
lets, which is only later divided into separate pellets in the 
simulation. The time traces of gas and pellet inputs that were 
necessary to achieve the improved density tracking are shown 
in figure 11. Note that before t = 10 s the pellet inputs are con-
strained to zero, as was discussed in section 5.3. Furthermore, 
gas is injected before t = 0 s to achieve sufficient tracking per-
formance just after breakdown. The error two-norm evolution 
is plotted in figure 12. Because of the identical model mis-
match for all ramp-ups, the convergence is smooth. The corre
sponding error in the time domain for all odd trials is plotted 
in figure 13. Around t = 18 s density control is difficult. Here, 

Table 2.  Parameter values for the performed simulations.

Parameter
Nom. 
model

First  
simulation Second simulation

True model
True 
model

shot-to-shot 
var. [%]

τpump,lim 0.05 0.03 0.04 0
τpump,div 0.0125 0.0075 0.01 0
λiz,0 0.018 0.016 0.024 2

kiz,T −1 · 10−4 −1.6 · 10−4 −0.6 · 10−4 0

τSOL 0.0017 0.0017 0.0017 2

Figure 9.  Starting point of the simple ILC simulation. The 
feedforward actuator signals are tuned to give acceptable 
performance for the control model, however when applied to the 
true model the constraints are violated and reference tracking is 
poor. For this simulation, no feedback is used, and the gas and 
pellet inputs consist of simple ramp functions (the dashed lines in 
figure 11).

Figure 10.  Performance of the ILC algorithm after 10 trials with 
constant model mismatch. Pellets cause slight violation of the 
density limits, but diffuse rapidly. Overall, the reference is tracked 
well.
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pellets are just allowed, but are relatively large due to their 
fixed size. Furthermore, the density limits are particularly 
restrictive in this part of the ramp-up. Therefore, selecting the 
proper fuelling inputs is critical and ILC particularly shows 
its strength.

7.2.  Combined control to handle shot-to-shot differences

Next, we simulate the effect of shot-to-shot differences. 
Besides the previously applied constant model mismatch, 
each ramp-up now also has a different value of λiz,0 and τSOL 
in a range of two percent around the nominal value of the 
true system, which is summarized in table 2. In this case, the 
robust feedback controller is needed to achieve a consistent 

ramp-up tracking performance. The simulated shot-to-shot 
differences are significantly smaller than the constant control 
model mismatches, which is expected to be the case during 
real operation. The nominal mismatch is now constructed in 
such a way that the true tokamak system fuels easier than the 
model. Therefore, using the initial feedforward waveform, the 
achieved average density lies above the reference, and in fact 
above the constraint. This is indicated in figure 14. The first 
five ramp-ups are solely ILC based, in order to relax the effort 
of the feedback controller. The weight factors in the ILC cost 
function are unchanged with respect to the proof-of-principle 
simulation before. Then, 5 trials using both controllers are per-
formed. The resulting density evolution is plotted in figure 15. 
Despite the shot-to-shot differences, tracking performance is 
greatly improved. Again, pellets cause slight violation of the 
density limit.

Figure 13.  Time trace of the filtered error for all odd trials. 
Significant increase in tracking performance is achieved. Note 
how the error just after breakdown error is only decreased slightly, 
which is due to the tight density constraint in this phase. The 
corresponding error 2-norm is visualized in figure 12.

Figure 14.  Starting point of the simulations including shot-to-shot 
differences. Here, the model mismatch is such that the real system 
fuels more efficiently, resulting in a higher density for a given input 
compared to the model.

Figure 12.  Convergence of the 2-norm over the error time trace 
of the ILC scheme. Because of the constant model mismatch in 
between shots, the convergence is smooth. The corresponding error 
in the time domain is indicated in figure 13.

Figure 11.  Optimal inputs as determined by the ILC algorithm. The 
initial (dashed blue) and final gas input Γvalve(t) (solid blue), and the 
initial (dashed amber) and final pellet input Γpellet(t)(solid amber) 
are plotted. Due to penalty on changes in input, the trajectories 
remain close to the original ones. Before t = 10 s, the pellets 
are constrained to zero. Gas is injected before t = 0 s to ensure 
sufficient tracking of the reference after breakdown.
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For this simulation, convergence is not monotonic due to 
shot-to-shot differences. This is indicated in figure  17. The 
changes in inputs that had to be made to achieve the increase 
in performance are indicated in figure  16. Note that in this 
plot, only the gas feedfoward trace (i.e. without the feedback 
controller) is shown. Furthermore, weights are all relative to 
one another: As gas is becoming less efficient and the error is 
increasing, the algorithm will decide to use pellets over gas, 
since the weight on the error is higher than on the use of gas 
over pellets. The relative effort of feedback and feedforward 
control is summarized in figure 18. Here, the feedback con-
troller clearly acts on the disturbances arising due to pellet 
injection, which is not seen by the ILC scheme due to the 
Butterworth filtering. Nevertheless, overall, ILC does most of 
the control.

7.3.  Statistical analysis of shot-to-shot differences

Next, fifteen sets of ten ramp-ups are simulated to investigate 
convergence of the error 2-norm in the presence of shot-to-
shot differences. Again, τSOL and λiz,0 are varied in a range 
of two percent around their nominal value for the true system 

Figure 17.  Error 2-norm convergence is not monotonic, because of 
the randomized shot-to-shot differences.

Figure 18.  Relative contribution of gas valve input from 
feedforward (ILC) and feedback (RC) sources. The feedback 
controller acts on disturbances due to pellet injection.

Figure 19.  Error convergence for fifteen sets of 10 ramp-ups in the 
case of a less effective fuelling for the true system. The shot-to-shot 
differences clearly have influence on the converged error, and the 
mean value is significantly larger than for the case without shot-to-
shot differences.

Figure 15.  Performance of ILC and RC combined after 10 
simulated shots including simulated shot-to-shot differences in τSOL 
and λiz,0. Tracking is greatly improved, and only the transient pellets 
cause density violation.

Figure 16.  Optimal inputs as determined by the ILC algorithm. The 
initial (dashed blue) and final gas input (solid blue), and the initial 
(dashed amber) and final pellet input (solid amber) are plotted. Note 
that for the gas input, this is solely the feedforward control action.
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for each new ramp-up. First, the nominal values for the true 
system are chosen such that the fuelling is less effective. 
Then, the error 2-norm convergence of the error in figure 19 
is achieved. For the case without shot-to-shot differences, the 
error-norm is slightly smaller, as is indicated in amber in the 
same figure. The shot-to-shot differences only have a small 
influence on the converged error in this case. The same holds 
for a positive model mismatch, where the true system has a 
more effective fuelling. This is indicated in figure 20.

8.  Outlook

The work presented in this paper contains a systematic proce-
dure for density control design using iterative learning control 
(ILC) for feedforward improvement and robust control (RC) 
for feedback control, that can handle the presently known con-
straints for actuators and physics. When the date of the first 
plasma in ITER approaches, new understanding of fuelling 
and particle transport mechanisms will help refine the model, 
while detailed knowledge of the actuator capabilities and 
other constraints will better define the boundary conditions 
for density control. With this new knowledge, the controller 
design based on the ILC+RC approach can be updated to 
yield predictions for the ITER density control.

Already today, more work can still be done on both the 
model and the control itself. The sensitivity of the controller to 
the different (heuristic) parameters in the model could be veri-
fied more extensively using parameter scans. Experimental 
data from JET or other tokamaks could be used to benchmark 
the model, the model can be included in the ITER plasma 
control system simulation Platform (PCSSP) [26] for system-
atic closed-loop testing in conjunction with other controllers 
active during the plasma ramp-up.

On the control side, one could tune ILC for multiple sce-
narios. Here, we only used a standard DINA simulation ramp-
up scenario, but one could also use different cases. This work 
considered only the plasma ramp-up until the L–H transition. 
Future studies could focus on density control following the 

L–H transition and into the flat-top phase, where slow time-
scale feedback control is expected to play a more important 
role. The ILC approach lends itself well to other transient 
phases of the plasma, in particular the ramp-down, which 
could also be studied. Also, many more constraints can still be 
implemented. For example, the loss-of-fuelling effect could 
be severe, and one may need pellets in the feedback controller 
to deal with the destabilizing effects of the shot-to-shot differ-
ences. However, the neutral screening effect and the large gas 
transport delay complicate the choice between the two inputs 
for the controller. Also, note that in this paper the focus lies 
on navg-control. However, in principle, it is also possible to 
choose a different parameter to control, such as the SOL or 
edge pedestal density. The controlled variable could also vary 
in time.

Finally, controller design is just one part of the control 
loop. In reality, the volume-averaged density on which the 
robust controller operates may not be known reliably at any 
point in time, due to diagnostics errors. Dynamic state recon-
struction algorithms such as a Kalman filter could be used to 
estimate the average density, or even the density profile from 
measurements, as recently applied to TCV and AUG [12].

9.  Conclusions

In this paper, a control-oriented transport model for the 
plasma density evolution in ITER is used to design a com-
bined feedback and feedforward control solution for density 
control during the ITER ramp-up. The model from [12] was 
adapted for use in ITER, and it was shown that the model 
can reproduce the density evolution in the reference ramp-up 
scenario from DINA simulations. It has been shown that it is 
able to reproduce the expected changes in pumping, fuelling 
efficiency, and the severe gas delay during the ramp-up. It has 
been shown that simple proportional feedback control lacks 
performance for the ITER ramp-up scenarios. ITER density 
control needs advanced controllers mainly because of two 
reasons. First, the delay of the gas valve is so large that feed-
back alone inherently fails to achieve enough performance 
after breakdown. Second, feedforward is in theory able to 
achieve this performance, but is difficult to tune for a new 
device like ITER. Therefore, a self-learning algorithm based 
on iterative learning control (ILC) [6] has been implemented. 
This technique has been shown to resolve delay problems 
and achieve sufficient reference tracking for deterministic 
ramp-up scenarios. Unfortunately, on a real tokamak, not 
every ramp-up is the same. Therefore, a robustly stabilizing 
feedback controller has been developed that can deal with 
the disturbances due to small shot-to-shot differences. It has 
been shown that together with ILC, this robust controller can 
achieve convergence in the tracking error even though some 
model parameters are changed randomly, and is still able to 
track the desired reference trajectory after a small number of 
shots. It can therefore be concluded that, based on simulation 
results, iterative learning control in combination with robust 
control is a promising solution for ITER density ramp-up 
control.

Figure 20.  Error convergence for fifteen sets of 10 ramp-ups in the 
case of a more effective fuelling for the true system. In this case, 
the shot-to-shot differences have a slightly smaller influence on the 
converged error compared to the case in figure 19.
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Appendix.  Parameter values in the nominal model

In table A1 below the parameter values in the model are sum-
marized. The mean ionization depth λiz,0, the pellet deposition 
location ρpellet,dep, and the width of their deposition function 
ρpellet,width are dimensionless like ρ, the normalized toroidal 
flux label. This label is defined via ρtor =

√
Φ/(πB0) as 

ρ = ρtor/ρtor,B, where ρtor,B is the toroidal flux label on the 
LCFS. More details on the equations  where the parameters 
occur can be found in [12].
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Transport
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ρpellet,dep 0.5 — Pellet deposition 
location

ρpellet,width 0.05 — Pellet deposition 
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