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Electrostatic drift turbulence of the edge plasma in the CASTOR tokamak is stud-
ied numerically by using the Hasegawa–Wakatani equations. The fluctuations of plasma
density and potential as well as the corresponding fluctuation-induced particle flux are
calculated for regimes with various plasma poloidal flows. Results of numerical simulations
are in a reasonable agreement with experimental results.

1 Introduction

Turbulent convection connected with the drift-wave turbulence is widely be-
lieved to be responsible for the anomalous particle and energy losses in magnetized
plasmas.

In the case of the edge plasma in tokamaks, the experimentally observed turbu-
lent structures are of “flute-type”. They form long filaments along the magnetic field
lines mainly at the outboard side of the torus [1, 2]. They exist even in the case when
the pressure gradient is well below the ideal ballooning instability threshold. This
indicates that the dominant instability could be the pressure-driven interchange
mode. Edge turbulence exhibits a strong poloidal asymmetry, what is observed on
many tokamaks (see e.g. references in [3]). Moreover, according to experiments, the
density and potential structures are similar to each other. Consequently, the pos-
sible mechanism of their coupling may be the collisional dissipation of the energy
of particle motion along the magnetic field lines. The approach of Hasegawa and
Wakatani [4, 5] is commonly accepted as a good approximation for modelling of
such plasmas. This approximation was also used for modelling of the L–H transition
and ELMs phenomena [6, 7]. Different regimes of the poloidal sheared flow were
studied in [8].

In this paper, the edge turbulence is simulated by using the above mentioned
model [4, 5], with the inclusion of sheared poloidal flows. The model is applied to
the experimental conditions of the CASTOR tokamak, where the edge plasma can
be externally polarized. For this purpose, an independently developed fluid model
of polarized plasmas is used to calculate the equilibrium poloidal flows.

∗) Presented at the 4th Europhysics Workshop “Role of Electric Fields in Plasma Confinement
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Czechoslovak Journal of Physics, Vol. 51 (2001), No. 10 1107



K. Dyabilin et al.

2 Description of the model

2.1 Basic equations

We start from the momentum and particle balance equations,

ρ

(
∂�v

∂t
+ (�v∇)�v

)
= −∇p+ �× �B −∇ · π̂ , (1)

∂n

∂t
+∇ · (n�v) = S , (2)

where S is the particle source and the remaining notations are standard. The per-
pendicular flow velocity, �v⊥, is expressed as:

�v⊥ =
( �B ×∇φ)
B2

+
( �B ×∇pi)
enB2

. (3)

The electrostatic potential and density are assumed as:

n = n0 + ñ ; φ = φ0 + φ̃ , (4)

where the subscript “0” denotes poloidally averaged steady-state values and the
tilde denotes the fluctuating parts. The toroidal magnetic field is approximated as:

B =
B0R

R+ r cos θ
, (5)

where θ is the poloidal angle, R and r are the major and the minor radii, respec-
tively. The magnetic field at the plasma axis is denoted as B0.

Applying the (∇×)‖ operator to the momentum balance equation (1), one ob-
tains the equation for the plasma flow vorticity,

ω = (∇× �v)‖ ≈ ∇2
⊥φ/B . (6)

The parallel momentum balance equations for electrons and the perpendicular pres-
sure balance equation imply the values of the parallel and perpendicular currents:

j‖ = −env‖ =
en0Te

meνei
∇‖

(
ñ

n0
− eφ̃

Te

)
, (7)

j⊥ =
1
B

∂p

∂r
. (8)

Finally, to reduce the dimensionality of the system, we use the single toroidal mode
approximation:

∇2
‖ ≈ − 1

L2
‖
, (9)

where L‖ is the characteristic parallel scale length of the density and potential
structures, which will be specified below.
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The resulting equations for the particle balance and the vorticity are written in
the slab geometry. The coordinates x and y correspond to the radial and poloidal
directions. The following quantities are normalized:

x, y → x, y ∗ 1
x0

; t→ t ∗ 1
τ0

; φ→ φ ∗ e

T0
; Te → Te ∗

1
T0
, (10)

where x0, T0 are some characteristic values (see below), and τ0 =
x2

0

(T0/eB)
.

Normalized basic equations used for the numerical simulation then become:

∂n

∂t
+ (∇φ×∇n)‖ =

∂n0

∂x

∂φ

∂y
− Vθ

∂n

∂y
+ σ2n0

(
φ

Te
− n

n0

)
+D∇2

⊥n (11)

∂ω

∂t
+ (∇φ×∇ω)‖ = −Gb

(
cos θ
n0

∂n

∂y
+

sin θ
n0

∂n

∂x
+
n

n0

(
1
T

∂T

∂x

)
sin θ

)

+ σ1

(
φ

Te
− n

n0

)
− Vθ

∂ω

∂y
+
∂2Vθ

∂x2

∂φ

∂y
+ µ∇2

⊥ω , (12)

ω = ∇2
⊥φ , (13)

where

σ1 =
ωciv

2
Te

νeiL2
‖
τ2
0 ; σ2 =

v2Te

νeiL2
‖
τ0 ; Gb =

c2s
x0R

τ2
0 ; T = Te + Ti . (14)

In the above equations, Vθ is the steady state poloidal flow velocity. The coeffi-
cients σ1 and σ2 (known as the adiabaticity parameters) determine the degree of
Boltzmann coupling between the density and potential fluctuations. The symbols
D and µ denote the coefficients of diffusion and kinematic viscosity, normalized to
the value 0.1 m2s−1.

2.2 Geometry and input parameters

Calculations are performed for the geometry of the CASTOR tokamak, with the
major radius R = 0.4 m and the minor radius of the vacuum vessel rch = 0.1 m.
The confinement region is restricted by the poloidal limiter with the radius a =
0.085 m. The toroidal magnetic field is typically B = 1 T and the plasma current
is in the range of Ip = (10–15) kA. This yields the safety factor at the separatrix
q(r = a) = 8–10. At such discharges, the line averaged density is n̄ = 1019 m−3, the
central electron and ion temperatures are Te0 = (150–200) eV and Ti0 = (50–80) eV,
respectively.

According to these typical parameters, we choose in Eqs. (10): x0 = 5 mm,
T0 = 25 eV. For the magnetic field B = 1 T, we get the characteristic time τ0 = 1 µs.

The system of equations is solved on a rectangular grid of (100× 1256) points
corresponding to the (radial × poloidal) directions. The grid is uniform in both
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Fig. 1. Radial profiles of plasma density
and electron/ion temperatures assumed

in simulations.

Fig. 2. Radial profile of the parallel cur-
rent fluctuations: simulation (diamonds)

and experiment (stars).

directions. The radial coordinates extend from r = 0.06 m up to r = 0.1 m and the
poloidal angles are (0–2)π. The profiles of plasma density and electron/ion tem-
peratures, chosen as an input for modelling, are shown in Fig. 1. The boundary
conditions of all variables are set zero for both radii limiting the region consid-
ered. In the poloidal direction, the condition of periodicity must be fulfilled. The
initial conditions are chosen as randomly distributed perturbations of density and
potential at the relative level of 10−6–10−7.

2.3 Parallel scale length of perturbations

The parallel scale length L‖ in the scrape-off layer is obviously given by the cir-
cumference of the torus

L‖ = 2πR ; r ≥ a . (15)

In the confinement region (r < a), the parallel gradient can be expressed as

∇‖ =
1
R
∂ϕ +

1
qR
∂θ ≈ 1

qR
∂θ and, consequently,

L‖ = 2πRq(r) ; r < a . (16)

The safety factor q(r) is calculated from the ohmic current profile, which is given
by the input Te-profile on assumption of the Spitzer resistivity.

The validity of the above estimate of L‖ has been verified “a posteriori” by
comparison of the parallel current density fluctuations experimentally measured
on CASTOR by means of a small Rogowski coil [9] with those deduced from the
simulations. The computed and experimental profiles of root mean square (rms)
values of j‖ fluctuations are compared in Fig. 2. In the scrape-off-layer (SOL), the
coincidence is surprisingly good. In the confinement region, the simulation values
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are higher than the experimental ones. This may be due to a limited accuracy
caused by the strong dependence of j‖ on the electron temperature. Thus, on the
whole, the above estimate of L‖ appears to be acceptable.

2.4 Poloidal flow velocity

The radial electric field in tokamaks as well as plasma poloidal flow is governed
by the ion poloidal force balance. The corresponding equation averaged over the
magnetic surfaces is:

(1 + 2q2)ρ
dVθ

dt
= JrB0 − Fvisc − Fi0 + (1 + 2q2)∇·(η∇Vθ) , (17)

where ρ =Min is the mass density, Vθ = −E/B0 + Vd is the poloidal velocity due
to both the E×B and the diamagnetic drifts (with the velocity Vd = ∇pi/(eB0n)).
The contribution from the toroidal velocity component has been neglected. Further,
d/dt=(∂/∂t + Vr∇⊥), where Vr is the radial velocity defined by the radial ion
flux as nVr = Γi. The factor (1 + 2q2) appears due to flux surface averaging [10].
The poloidal rotation is driven by the radial current Jr. The damping mechanisms
included into the balance equation are the parallel ion viscosity (Fvisc), the friction
force due to the ion-neutral collisions (Fi0) and the damping due to the transverse
viscosity. More details are given in [11].

In the limiter shadow, parallel electric currents lead to the plasma radial po-
larization and, consequently, to its poloidal rotation. Steady-state radial profiles of
the plasma potential and poloidal velocity computed by this model are presented in
Fig. 3a. The radial profile of the plasma potential is consistent with that measured
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Fig. 3. Radial profiles of the plasma potential (thick line) and the poloidal flow velocity
(thin line) a) in the case with the limiter-induced flow, and b) with biasing (electrode

position r = 70 mm; biasing voltage Ub = +200 V.
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by Langmuir probes at the CASTOR edge [12]. Also, the poloidal flow velocities
measured by the rotating Mach probe technique are within 0.1–0.2 of the ion sound
velocity [13, 14], in agreement with the computed Vθ. Figure 3b shows the same
profiles in the case of biasing (with the electrode positioned at r = 70 mm and
biased up to Ub = +200 V, see Subsect. 3.2. In this case, the flow velocity increases
in the whole region between the electrode and the wall.

3 Results of modelling

Numerical solution of Eqs. (11)–(13) yields the spatial and temporal distribution
of the potential and density fluctuations at the plasma edge of the CASTOR toka-
mak. Then, the radial profiles of rms values of fluctuating quantities, their power
spectra and the spatial correlation lengths are derived. Finally, the fluctuation-
induced particle flux is computed.

3.1 Turbulence at V� = 0

The snap-shots of the density and potential structures are shown in Fig. 4. It is
seen that they are of a similar character, which is obviously because of their strong
coupling. Such saturated level of turbulence is developed in a few hundreds of
microseconds (for the CASTOR case).

In accordance with the unfavorable curvature of the magnetic field lines, the
turbulent structures appear at first in the low field side region of the torus, −π/2 <
θ < π/2. Then, they are redistributed poloidally, reaching a dynamic equilibrium.
However, the poloidal asymmetry remains not only in the “in-out” direction, but it
develops also in the “top-bottom” direction. In what follows, we will present results
concerning the regime of saturated turbulence.
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Fig. 4. Snap-shots of turbulent structures. Left: plasma density, the scales in 1018m−3.
Right: plasma potential normalised to 25 V.
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Detailed pictures of the potential structures at the top of the torus are given
in Fig. 5a–c. The individual panels represent the situation in three consequent mo-
ments. It is seen that the characteristic poloidal and radial dimensions of potential
structures are about (5–10) mm. Typical characteristic life time of the structures is
of the order of 10 µs. The poloidal and radial correlation lengths, derived from the
spatial-temporal correlation analysis of the computed data are in the same range.
This is in agreement with pictures, obtained in experiments performed on the CAS-
TOR tokamak using a 2-D matrix of Langmuir probes [15], see Fig. 5d. The figure
is in scale with a–c. The matrix of probes is positioned at the top of the torus.

Spectral analysis of the fluctuation data computed at the separatrix (r =
85 mm) are presented in Fig. 6a. Three frequency bands, with the power spec-
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Fig. 5. a-c): Three snap-shots of potential structures at the top of the torus. Each panel
depicts the area of 40 mm × 40 mm. d): Potential structures measured by a 2-D matrix

of Langmuir probes (in scale with a–c).

Czech. J. Phys. 51 (2001) 1113



K. Dyabilin et al.

frequency [kHz]
1 10010 1000

Model 10-40 (51) tip, at 85 mm
100

frequency [kHz]
1 10010 1000

10-1

10-3

10-2

10-4

10-6

10-5

10-4

10-6

10-5

10-7

#7355 - #7388, OH, at VSL

f 0f -0.83

f -4.2

f -0.8

f 0

f -2.7

(a) (b)

Fig. 6. Power spectra of potential fluctuations at the top of the torus and r = 85 mm
(separatrix): a) derived from simulation; b) experimentally measured by a probe.
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Fig. 7. a) Temporal evolution of the poloidally averaged particle flux. Radial positions
r = 64 mm (upper trace) and r = 96 mm (lower trace). b) Radial profile of the poloidally

averaged particle flux.

trum density decaying as f−α are apparent, the corresponding exponents being
α ≈ 0, 0.83, and 4.2. Apart from the very low power spectra densities, the above
mentioned exponents are close to the experimentally measured values, cf. Fig. 6b.

The fluctuation-induced flux can be calculated from the simulation results as

nvr = [n0(x) + ñ]
( �B ×∇φ̃)r

B2
. (18)

Figure 7a shows the temporal evolution of the poloidally averaged flux

〈nvr〉 =
1
2π

∫ 2π

0

nvr(θ)
(
1 +

r

R
cos θ

)
dθ (19)

for two radial positions. It is seen that the averaged flux density is always positive
(outward). Radial profile of the flux, averaged over time and poloidal angle is shown
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in Fig. 7b. In the vicinity of the separatrix, the flux decreases nearly three times as
compared with that in the confinement region. It should be noted that the global
particle confinement time on the CASTOR tokamak is (1–2) ms. This implies the
global particle flux across the separatrix in the range of (2–4) ×1020 m−2s−1. As
seen from Fig. 7b, the numerical simulation yields values close to these numbers.

3.2 Turbulence at V� 6= 0

As already mentioned, limiter-induced parallel electric currents lead to plasma ra-
dial polarization and, consequently, to its poloidal rotation (cf. Fig. 3). The rotation
can be also induced or enhanced by means of external plasma polarization, e.g. by
a biasing electrode [16]. This was successfully demonstrated also on the CASTOR
tokamak [12]. Here, the carbon mushroom electrode can be inserted into the plasma
column from the top of the torus, ≈ 80o toroidally away from the ion side of the
limiter. Its poloidal extension is ≈ 50mm.

The poloidal flow strongly affects the plasma turbulence. Fig. 8a shows the
temporal evolution of the fluctuation-induced flux in the confinement region (at
r = 80 mm) with limiter-induced current and with the biasing (switched on at
t = 100 µs). The characteristic transition time of the flux change is less than 100 µs.
Fig. 8b gives the radial profile of the average fluctuation-induced flux without and
with the biasing. The flux is significantly reduced owing to the limiter-induced flow,
and still more so with the biasing (cf. Figures 7 vs. 8).

The influence of the poloidal flows on the spatial and temporal behaviour of the
fluctuation induced flux can be seen in more detail from Fig. 9. Here, the evolution
of the radial profiles of the particle flux at the top of the torus is shown. Figure 9a
corresponds to the regime, when the flow is absent. Figure 9b is the case of limiter
induced flow and biasing (switched on at t = 100µs). In the regions where the flow
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Fig. 8. a) Temporal evolution of the poloidally averaged flux with limiter-induced flows
and biasing. Radial positions r = 80mm, biasing is switched on at 100 µs. b) Radial profile

of averaged fluctuation induced flux with (diamonds) and without (stars) biasing.
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velocity shear is strong enough (cf. Fig. 3), the level of fluctuations is reduced. Note
that in the low-shear region (r ≈ 96mm), the characteristic time of the fluctuations
decreases. These features become even more pronounced in case of plasma external
polarization with a broader region of high flow velocity.

4 Conclusions

The 2-D system of the Hasegawa andWakatani equations was solved numerically
in the region of the limiter shadow and its vicinity. The input parameters were
chosen according to the tokamak CASTOR conditions. Various regimes including
externally polarized plasma were studied. In general, results of modelling exhibit a
good agreement with the experimental data:

– the characteristic dimensions and time scales of the density and potential
structures are close to the measured ones;

– the value of the fluctuation induced particle flux is comparable with that
measured in the experiment;

– sheared plasma poloidal flows strongly affect the turbulent structures; the
resulting particle flux reduces remarkably in agreement with experimental
data.

However, some features, e.g. the shape of the frequency spectra (for f > 70kHz),
do not agree with the experiment.

Finally, we remark that the estimate of the characteristic parallel scale length
as well as the reduction of the system of equations to the 2-D case (see e.g. [17])
require further studies.
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