A Standard Data Access Layer for Fusion Devices

A. Netoa,*, H.Fernandesa, D. Alvesa, D.F. Valcárcela, J. Ferreiraa, B.B. Carvalhoa, J.Vegab, E.Sánchezb, A.Peñab, M.Hronc, C.A.F. Varandasa

a Associação Euratom/IST, Centro de Fusão Nuclear, Av. Rovisco Pais P-1049-001 Lisboa, Portugal

bAsociación Euratom/CIEMAT para Fusión Madrid, Spain

cAsociace EURATOM IPP.CR Prague, Czech Republic

[image: image1.png]User

!

Library

PAPI SDAS - Server SDAS - Server SDAS - Server

Database Association A Database Association B Database Association C

Abstract

Each EURATOM association stores data using proprietary schemes, usually developed by the research unit or using third party software. The temporary exchange of researchers between laboratories is a common practice nowadays. When the researchers returns to the home laboratory, usually there is the need to continue to follow the work started in the foreign country. The amount of available data has become enormous and the main data index is changing from the shot number to time and events, where the shot number is just one among the most relevant.

A solution to this problem can be given by a common software layer between end-users and laboratories must exist. The components needed to create this software abstraction layer, between users and laboratories data, have already been developed using an universal and well known remote procedure call standard (RPC) based on the eXtensible Markup Language(XML): XML-RPC.

The library allows data retrieval using the same methods for all associations. Users are authenticated through the PAPI system (http://papi.rediris.es), allowing each organization to use its own authentication schema.

Presently there are libraries and server implementations in Java and C++. These libraries have been included and tested in some of the most common data analysis programs such as MatLab and IDL. The system is already being used in ISTTOK/PT and CASTOR/CZ.

Keywords: Data access, Remote Procedure Call, XML, Database, Web-services

[image: image2.png]User |q.

Data access schema A IDnm access schema B ~ No data access
N

Association A Association B Association C

i i !

1. Introduction

With the internationalisation of science it is very common that scientists need to access data from different laboratories. Each laboratory has its own way of retrieving data and users need to adapt themselves. Instead of worrying about data and analysis, scientists have to spend time and effort learning how the different data access schemes work, change their analysis codes for each experiment and manage an updated version for the different programs and libraries which are required to fetch data in the different scenarios. Figure 1 illustrates this situation.

To solve this problem the best approach is to hide all the complexity from end-users, where they only have to learn once how to access data and to maintain a single updated version of libraries and software.

This doesn't mean that every association must store and retrieve data the same way, as this wouldn't allow to test new technologies and new data storage solutions and algorithms. The key point is that scientists must be as isolated as possible from different IT tests and solutions and should only have to worry about data analysis and results.

This paper presents a solution that implements the ideas described above.

2. Interface layer

In order for users to always use the same methods to interact with data, a common layer must exist and be installed in every association.

Users don't ask data or information directly to the association's database but to this software layer, which then communicates with the specific data storage mechanism. The connection between the layer and the data storage schema, named connector, must be developed for each association's needs and must be able to translate the queries sent by the layer into something the database understands. In order to do so, a common interface is provided to the connector's developers. Some generic connectors, mainly for relational databases, are already available.

2.1 XML-Remote Procedure Call

Remote procedure calls (RPC) allow to execute functions on a remote server and receive values from it. XML-RPC[2] is a special case of RPC where the requests and the returned values are translated into XML before each communication. It is a simple but powerful protocol which allows to pass and retrieve standard parameters such as numbers, strings and dates; and also complex structures like lists and records. Support for base64 binary data is also available.

The layer defined in section 2 is composed by a XML-RPC server and the defined connector, together referred as Shared Data Access System (SDAS) server.

One might think about the performance issues introduced by the overhead of the XML tags. The solution to this problem lies on its nature: although the tags add some extra bytes, at the same time these are extremely repetitive and can be compressed by any compression algorithm.

XML-RPC is independent of the system architecture, operating system and computer language. It is a very stable protocol, available on almost every computer language .

2.2 Connector

Once the XML-RPC server is configured and installed on the association's host, the next step is the connector's development.

An interface is provided with the methods that must be implemented. Among the main methods one can find: data, parameters and events searching and data fetching.

As referred before, XML-RPC is implemented in a large set of computer languages. Currently SDAS servers are available in Java, C++ and Python. Data or search results returned by the data storage mechanism are automatically converted into one of the language's native types and then as a XML-RPC type, which will be returned to the user.

2.3 Databases

Any kind of database can be used with SDAS. Without committing to a specific database, SDAS doesn't obstruct evolution and testing of new technologies. It can be changed without interfering with the database and vice-versa. Again the main point is that scientists don't need to know anything about these changes.

3. User data access

Still to discuss is the way users interact with SDAS. A set of libraries written in Java, C++ and Python is available. These libraries can be easily integrated in programs such as MatLab, Mathematica and IDL (all these programs were tested), allowing users to retrieve data with only a few lines of code. One can also use one of the libraries to develop new programs.

In the previous section it was stated that data was fetched by the SDAS server, marshalled and sent as an XML-RPC type to the client. It is then the library's responsibility to convert the received XML-RPC type into the library's language native type. This is totally transparent to the end-user which doesn't have to worry about these data conversions.

3.1 Mime-types

Data retrieved by the server as always some format associated, known as mime-type. With this information, libraries are able to transform raw data into something useful to the client. There is large amount of common mime-types such as arrays, strings and images already built-in into the server and libraries. If needed, new mime-types can be added without the need to reprogram the core of the SDAS system. This can be useful if for instance an association acquires some specific type of data which needs a particular mime-type. A system schema is shown in figure 2.

3.2 Indexing

3.2.1 Time

Usually data is not useful without an associated time scale. Each block of data as picoseconds precision data structures associated with it. Along with the data retrieved, the absolute UTC time-stamps of the first and last samples are also attached. With this information one can easily calculate parameters such as the time sampling period. If one has different sampling rates, several blocks of data will be returned.

3.2.2 Events

Everything that happens in an experiment can be considered an event. Examples are some triggers and the discharge itself. In the fusion reactors of the future, continuous, or at least very long, discharges are expected and will constrain the usage of events for data indexing.

SDAS has full support for events. Each event is identified by a unique name, a number and an absolute time stamp. An event is for instance the shot number which is present in every fusion reactor and can be represented, for example, by the name 'SHOT', the number of the discharge and the time-stamp when it occurred. Events with the same name are distinguished by the number and time-stamp. In the previous example one expects to have a large number of events 'SHOT'.

When data is fetched the associated events are also returned. This allows to easily correlate signals with events which occurred in the machine during the experiment.

3.2.3 Parameters

Parameters are formed by a unique identifier in the system, an internationalised name and description, a mime-type that identifies the type of data generated and a set of key/pair values for extra-information.

3.3 Available functions

As referred before there is a large set of available functions which allow users to easily interact with data. The following paragraphs describe some of these functions.

3.3.1 Search

One can search parameters, data or events. Parameter searching can be performed by unique identifier, name or description. Data is searched within time intervals or by associated events. Events can be searched by time or name.

Typically one starts by searching an event of interest, like a shot. Once the event is found the data associated with it can be searched and retrieved. This procedure can also be applied to time intervals, for example, to get all data of the last two days. The next example illustrates how to search events which occurred in December 2005, using MatLab:

Figure 3: Event searching using MatLab. In this example all events which occurred in December 2005 will be retrieved.

3.3.2 Data retrieval

One retrieves data associated with a parameter by passing the name of the parameter and information about the associated event. This can be done with one of the several functions available. Support for multiple data retrieval is also available, as shown in the Figure 4.

Figure 4: At ISTTOK/PT[3] the SHOT event is uniquely identified by the unique identifier '0x0000'. In this example data for the parameters IIGBT and IVERT ,associated with the event number 11224, will be returned.

3.4 Documentation

Almost as important as the system itself is the documentation which allows users to understand how the system works and how it can be used. A community shared documentation system is available through a wiki page[1]. This kind of tool allows anyone to contribute to a common common knowledge database by sharing information, experiences, codes and tips.

4. Security

Security has to manage the authentication (who is accessing?) and authorization (what can be done) issues. The former is responsible for granting or denying the entrance to a SDAS server. The latter has to filter the access to the several data of a database.

The authentication mechanism should be common to all the sites involved in a shared data access system. As a consequence, a unique account per user is required, thereby avoiding the need of duplicating resources for account maintenance. On the contrary, the authorization methods must depend exclusively upon the sites. In this way, access permissions rely completely on the local environments, thus allowing full control of the local resources.

The database of a site consists of different database management systems, e.g. raw data files, processed data files and relational databases. Each management system usually has its own security policy, where the data are typically protected by a username/password mechanism (internal accounts). The authentication and authorization system of a SDAS server has to be independent of the specific security methods of the internal databases. However, this authentication and authorization system has to supply some automatic means to assign external users to internal accounts, in order to achieve as much transparency as possible.

The PAPI system [4, 5] can be used for these purposes. In particular, the PAPI federation infrastructure allows the configuration of an easy and powerful distributed authentication and authorization system. This structure enables that a user is only authenticated in one site (typically in his Association site) and this authentication provides him with credentials to access any other site of the federation.

A PAPI federation is based on the creation of trusted relations between different PAPI sites. Although all the PAPI systems of the federation share some resources for authentication purposes, however, they are completely independent each other. This means that each PAPI site protects its local resources and manages its own users without interaction with other sites. Therefore, a user can be authenticated anywhere (i.e. recognized as a member of the federation) but his access permissions are fully determined by the local authorization rules of each site.

5. Licensing

SDAS is licensed under the GNU General Public License[6]. The licensing of code and binary libraries developed inside the scientific community should be open-source based. This guarantees that the programs can evolve even if the original developers cease to contribute to the project. People can also improve, adapt and fix bugs very rapidly when compared to proprietary software development. The source code is maintained in a Subversion[4] version control system allowing to keep track, among other things, of all the work developed, submitted patches and bug fixes.

6. Comparison with MDSplus

MDSplus has been used as the standard for remote data retrieval in a large set of experiments around the world[7], introducing new important concepts in the way of storing and accessing data. The experience gain, MDSplus and new IT technologies have provided for many years now can be used in the development of new solutions.

The MDSplus tree like structure based in the idea of shot indexed data is no longer suitable for the forthcoming challenges. This suggests a highly selective event based approach to the storage and indexing of data flows.

Security is also a main issue in every data access system. The security schema used by MDSplus is very primitive[7] potentially allowing unauthorized access and possible remote exploitation.

Furthermore, the concept of string parsing used in MDSplus commands adds an unnecessary overhead for the user. The syntax should be as simple as possible privileging short and clear instructions.

The future family of fusion experiments will require a revision and evaluation of present access data access and storage methodologies. In experiments like ITER large amount of data will be acquired, most of which might not be relevant.

7. Conclusions

The Shared Data Access System allows scientists to focus only on data without having to worry about data access procedures. Moreover, the user codes don't need to be changed to fit the host laboratory needs.

There is native support for integrating the SDAS libraries into the most commonly used data analysis programs like MatLab, Mathematica and IDL.

The system was designed to be as generic as possible and can be adapted to any data storage mechanism. In the near future bi-directional support for data will be added, allowing users to submit processed data.

SDAS provides a valid alternative for data indexing. Using events and time-stamps the system is prepared for the challenges of the near future, maintaining backward compatibility with the solutions of the past.

Currently it is being used at ISTTOK/PT and CASTOR/CZ[8].

Acknowledgements

This work has been carried out in the frame of the Contract of Association between the European Atomic Energy community and Instituto Superior Técnico and has also received financial support from Fundação para a Ciência e Tecnologia (FCT). The content of the publication is the sole responsibility of the authors and it does not necessarily represent the views of the Commission of the European Union or FCT or their services.

References

[1] SDAS Wiki, http://baco.cfn.ist.utl.pt/dokuwiki/doku.php

[2] XML-RPC Specification, http://www.xmlrpc.com/spec, June 2003.

[3] Centro de Fusão Nuclear, http://www.cfn.ist.utl.pt/eng/index.html

[4] R. Castro-Rojo, D. R. López. The PAPI system: point of access to providers of information, Computer Networks 37, 6 (2001) 703-710.

[5] R. Castro, D. López, J. Vega. An authentication and authorization infrastructure: the PAPI system. Fus. Eng. Des. 81 (2006) 2057-2061.

[6] GNU General Public License, http://www.gnu.org/copyleft/gpl.html

[7] T.W. Fredian and J.A. Stillerman, MDSplus: Current Developments and Future Directions, Fusion Engin. Design 60 (2002) 229.

[8] Institute of Plasma Physics of Czech Replubic, http://www.ipp.cas.cz/main.php

�

Figure � SEQ "Illustration" *Arabic �2�: Schema of the SDAS system. Users use the same libraries and programs to interact with different associations.

date_start = Date(2005, 11, 1);

date_end = Date(2005, 11, 31);

tstart = TimeStamp(date_start);

tend = TimeStamp(date_end);

eventsFound = client.searchEventsByEventTimeWindow(tstart, tend);

for i = 1:1:size(eventsFound)

 eventsFound(i)

end

dataStruct=client.getMultipleData({'CENTRAL_OS9_ADC.IIGBT', 'CENTRAL_OS9_ADC.IVERT'},'0x0000', 11244)

�

Figure � SEQ "Illustration" *Arabic �1�: Current situation in remote data access. Scientists have to adapt themselves to the different data access schemes associated with each laboratory.

*	 Corresponding author. Tel: +351- 218417696; fax: +351- 218417819

	E-mail address:andre.neto@cfn.ist.utl.pt(A. Neto).

