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Abstract.  Equilibrium reconstruction determines the plasma shape, the current profile 
and pressure profile parameters in tokamaks. It is based on solving Grad-Shafranov 
equation describing MHD equilibrium in axially symmetric devices. This paper 
reports on the principles of the EFIT code and on the parallelization of the EFIT2006 
code.  

Introduction 
Equilibrium reconstruction is used to obtain information about the plasma shape, the current and 

the pressure profile parameters in tokamaks [Lao et al., 1985]. The reconstruction is performed by 
iterative solving the Grad-Shafranov equation [Shafranov, 1971; Wesson et al., 1997]. Various 
tokamak experiments have their own unique equilibrium reconstruction codes. Some of these codes 
are particular versions of EFIT [Lao et al., 1985]. Tokamak geometry, currents in the poloidal field 
coils and magnetic measurements are fundamental input data to the EFIT code. Other diagnostics, 
such as Thomson scattering, Motional Stark Effect (MSE) or Faraday rotation, might be used as well. 
EFIT2006 is a machine-independent version of the EFIT code. It adopts recommendations of the ITM 
(Integrated Tokamak Modelling) EFDA task force, such as object-oriented design and XML input files 
[Appel et al., 2006].  

Grad-Shafranov equation 
Plasma can be described by many different approaches. One of the models describing plasma is 

the MHD one-fluid model. This model describes plasma macroscopically as one fluid consisting of 
electrons and ions. It uses set of so called MHD equations. 

In this section of the article we will derive the Grad-Shafranov equation, which describes 
equilibrium state of plasma and magnetic configuration in axially symmetric devices such as tokamak, 
from Maxwell equations and MHD equation of motion. 

Maxwell equations in the MHD approximation are: 
 0B∇⋅ =                                                                       (1) 

B jµ∇× =                                                                    (2) 

 
BE
t

∂
∇× = −

∂
,                                                                (3) 

where B  is magnetic induction, µ  is magnetic permeability, j  is current density and E  is electric 

field. It should be noted that in MHD approximation Maxwell equation (2) does not have term D
t

µ ∂
∂

. 

MHD equation of motion is: 
d
d
v j B p
t

gρ ρ= × −∇ + ,                                                        (4) 

where ρ  is plasma density,  is velocity, v p  is plasma pressure and g  is gravitational acceleration. 
Plasma density, velocity and pressure are defined as: 
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( )i i e e i en m n m n m mρ = + ≈ +                                                   (5) 
1 ( )i i i e e ev n m v n m v
ρ

= +

e

                                                           (6) 

ip p p= + ,                                                                   (7) 

where , ,  and in im iv ip  is ion concentration, mass, velocity and pressure. , ,  and en em ev ep  is 
electron concentration, mass, velocity and pressure.  

It is possible to assume that the equilibrium configuration in tokamak is axially symmetric (this 
assumption neglects toroidal ripple of magnetic field). It means that in the cylindrical coordinate 
system (R, ,Z)ϕ  the magnetic induction B  is independent on the toroidal angle ϕ . Therefore  

(R,Z) ( )B B B ϕ= ≠ .                                                           (8) 
Hence, it is possible to define a poloidal flux function (R,Z)Ψ : 

1(R,Z) d
2 D

B S
π

Ψ = ⋅∫ ,                                                        (9) 

where D denotes the area of the disc at position Z with radius R perpendicular to the Z-axis.  
is up to the factor 2π the flux of the poloidal magnetic field through area D. 

(R,Z)Ψ

Poloidal components of the magnetic induction vector B are then: 
1

RB
R Z
∂Ψ

= −
∂

                                                               (10) 

1
ZB

R R
∂Ψ

=
∂

.                                                                (11) 

The poloidal flux function , given by equation (9), satisfies the Maxwell equation (1) for 
cylindrical coordinate system: 

(R,Z)Ψ

1 1( ) T Z
R

B BB RB
R R R Zϕ

0∂ ∂∂
∇ ⋅ = + + =

∂ ∂ ∂
,                                (12) 

where TB  is the toroidal component of the magnetic induction vector B . 
Let us now define a function F as: 

T T
FB e
R

= ,                                                                  (13) 

where  is a unit vector in the direction of toroidal angle Te ϕ . 
The magnetic induction B  can then be written as: 

p TB B B= +  
1 [p T ]B e
R

= ∇Ψ×                                                          (14) 

T T
FB e
R

= , 

where pB  denotes the poloidal vector component of magnetic induction B . 
From the Maxwell equation (2) and the magnetic induction B  defined by equation (14) it is 

possible to obtain expression for current density j : 

                                                      p Tj j j= +  

1 [ ( / ) ]Tpj F e
R

µ= ∇ ×                                                      (15)

                                                    ( ) TTj L e= Ψ , 
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where  and  are the poloidal and the toroidal components of the current density  and the 
operator  is defined as: 

pj Tj j
L

1 1L
R R R Z R Zµ µ
⎛ ⎞ ⎛∂ ∂ ∂ ∂

= − −⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝

⎞
⎟
⎠

.                                             (16) 

The expressions (14) and (15) for B  and j  are valid in the whole space of the tokamak (plasma, 
vacuum, vessel, coils) because they involve only the Maxwell equations and the assumption of axial 
symmetry. 

For tokamaks it is possible to neglect gρ  in equation (4),  and for an equilibrium state d 0
d
v
t

ρ = . 

Equation (4) then becomes so called equilibrium equation which reflects that the force due to p∇  is 
compensated by the  force: j B×

p j B∇ = × .                                                                 (17) 
From (17) it is possible to see that: 

 0B p B j B⋅∇ = ⋅ × =                                                          (18) 

0j p⋅∇ = ,                                                                  (19) 
which means that equilibrium magnetic field lines and current lines lie on isobaric surfaces 
(p=constant). These surfaces are called magnetic surfaces. These magnetic surfaces are defined by: 

( , )R ZΨ = constant .                                                         (20) 
Equations (14) and (18) indicate that p∇  is collinear with ∇Ψ , therefore: 

( )p p= Ψ                                                                     (21) 
and equations (15) and (19) indicate that p∇  is collinear with ∇Ψ , therefore: 

( )F F= Ψ .                                                                    (22) 
The equilibrium equation (17) combined with equations (14) and (15) for B  and  becomes: j

2

L Fp
R Rµ

FΨ
∇ = ∇Ψ − ∇ ,                                                   (23) 

which can be written as: 
21 (

2
)p FL R

Rµ
∂ ∂

Ψ = +
∂Ψ ∂Ψ

,

.                                                 (24) 

 
The equation (24) is the Grad-Shafranov equation and  is the elliptic operator (16). Right-hand 

side of the Grad-Shafranov equation represents toroidal component of the plasma current density 
. 

L

,T plj

EFIT2006 

EFIT algorithm 
The EFIT code iteratively solves the Grad-Shafranov equation using many different constraints 

[e.g. Lao et al., 1990; Appel et al., 2001]. When we write the Grad-Shafranov equation with all terms 
representing toroidal current density, we get: 

, ,T T C T V T plL e j j jΨ = + + ,                                                    (25) 

where ,T Cj  is current density in the poloidal field coils, ,T Vj  is toroidal component of current density 

in the vacuum vessel and other passive conductive structures and ,T plj  is toroidal component of the 

plasma current density defined by right-hand side of equation (24). ,T Cj  might be expressed as: 

236



HAVLICEK ET AL.: A MAGNETIC EQUILIBRIUM RECONSTRUCTION IN TOKAMAK 

,
1

cN pf
i

TT C
i i

Ij
c=

=∑ e ,                                                          (26) 

where  is the current in i-th poloidal field coil and pf
iI ic  is geometric factor transforming the current 

in the i-th coil to current density. 
In the first iterative step EFIT gets new iteration of poloidal flux function  by solving equation 

(25) with selected representation of the term 

Ψ
2

,
1 ( )

2T pl
p Fj R

Rµ
∂ ∂

= +
∂Ψ ∂Ψ

. The most common selection 

is representation in the form of polynomial functions: 

  
1

N
i

i
i

p α

α
=

∂
= Ψ

∂Ψ ∑                                                            (27) 

2

1

( ) N
i

i
i

F γ

γ
=

∂
= Ψ

∂Ψ ∑ .                                                         (28) 

This first iterative step is performed by Green’s function method: 
' '1 '

,
1 1

( ) ( , ) ( , ) ( , ) ( , )d d
C VN N

t pf pf V V t
i iT T Ti i i i T pl

i i
r e G r r I e G r r I e G r r j r R Z+

= =

Ψ = + + Ψ∑ ∑ ∫ ' ,       (29) 

where  is new iteration of poloidal flux function,  is Green’s function for determination of 
poloidal flux function at position  from the current  in the i-th poloidal field coil at the position 

,  and  are Green’s functions for i-th vacuum vessel element current and plasma current 
density respectively.  

1t+Ψ pf
iG

r pf
iI

ir V
iG G

In the second iterative step EFIT gets new iteration of parameters iα , iγ ,  and . In this step 
the physical measurements are involved. Any measured value 

pf
iI V

iI
k
Ma  (k=1,…,number of measurements) 

which is dependent on any of the parameters iα , iγ ,  or (therefore dependent on the , pf
iI V

iI Ψ Tj , 

B  or any derivative) might be used as a constraint for EFIT. In order to do so, this dependence 
 is linearized in the parameters ( , , , )k pf

i i i ia Iα γ VI iα , iγ ,  and : pf
iI V

iI

0
0 0 0 0

1 1 1 1

C VNN N Nk k k k
k p

i i i ipf Va
i i i ii i i ia a a a

a a a aa I
I I

γα

α γ
α γ= = = =

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂∑ ∑ ∑ ∑f V k
PI a=                  (30) 

and k
Pa is the predicted value of k

Ma .  
These predicted values are compared with measured values: 

k k
P Ma a= .                                                                    (31) 

Equations (31) constitute a system of linear algebraic equations for iα , iγ ,  and . This set 
of equations is typically overdetermined, i.e. the number of equations is greater than the number of 
unknowns. Singular Value Decomposition method is used to find the least-square solution, while each 
equation is weighted by a factor 

pf
iI V

iI

kσ , corresponding generally to the measurement accuracy: 
2

min

k k
M P

k k

a a
σ

⎛ ⎞−
⎜ ⎟
⎝ ⎠

∑ .                                                        (32) 

This second iterative step supplies new iteration of parameters iα , iγ ,  and  into the first 
iterative step.  

pf
iI V

iI

EFIT2006 parallelization 
This section of the article describes our contribution to the further development of the EFIT2006 

code. Small tokamaks (such like CASTOR or COMPASS-D) might have usual time duration between 
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two consequent shots 5-10 minutes. In order to quickly analyze the last shot (and decide what changes 
should be taken to achieve desired plasma configuration in the next shot) results from the EFIT code 
should be available as quickly as possible. The EFIT2006 code is written in the C++ with 
computational core of the code in the Fortran 95 and is capable of solving equilibrium reconstruction 
of one time slice in approximately 2 seconds (PC with CPU Intel P4 2GHz Dual Core, 100Mbit 
Ethernet connection,  grid 65 65, measured data from × ≈  60 magnetic sensors). To obtain time 
evolution of the plasma configuration several dozens or hundreds of time slices should be computed in 
time substantially smaller than 5-10 minutes. In order to achieve such performance we decided to 
parallelize the EFIT2006 code. 

Computation of each consequent time slice does not require data input from the last time slice. 
Therefore the problem of parallelization of the EFIT2006 code is so called “embarrassingly 
parallelizable” problem, i.e. it is possible to divide computation into many subtasks (one subtask for 
one time slice), which might be solved independently on each other and without mutual 
communication. 

The parallelization was carried out using C++ Boost Serialization Library [Ramey, 2002] and 
Boost MPI library [Gregor et al., 2005]. Boost Serialization Library is used for transforming various 
C++ data structures (i.e. classes) to and from a sequence of bytes and the Boost MPI library is used for 
sending these data between computer processes. 

Principle of the parallelized EFIT2006 code is quite simple. There is one master process running 
on one computer. This master process reads input data and beforehand computed Green’s response 
functions and distributes response functions to slave processes. Then it distributes input data for 
individual time slices to individual slave processes (one time slice to one slave process). After that the 
master process awaits for the first slave process to finish its job, receives the result and if there are any 
unassigned time slices it sends a new time slice to the slave process for computation. This is repeated 
until all the time slices are computed. Afterwards, the master process writes results into an output file. 

The slave process only awaits an input data, then processes them and sends the result to the master 
process and again awaits new input data until it is terminated by a specific message tag from the 
master process. 

Performance gain is depicted in Figure 1. It is possible to see that the performance gain for lower 
number of time slices is quite small ( ~ 3 ×  smaller total time than in the non-parallel EFIT2006 run 
for optimal number of slave processes ~ 8). This is caused by long period of time necessary for 
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Figure 1: a) Dependence of the total time required to broadcast response functions, compute 
equilibria for 60, 120 and 300 time slices and write results to the output file. Non-parallel EFIT2006 
run for 300 time slices lasts ≈  660 s. b) Efficiency of computing phase. “Only master” means that 
there was only the master process and no slave process running on the master computer (2 CPUs per 
one computer, usually two processes per one computer). Master & slave means that the master and 
one slave process were running on the master computer. (Points with number of slave processes = 0 
are for non-parallel EFIT2006 run.) 

a) b) 
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broadcasting the response functions to the slave processes. The performance gain for a higher number 
of time slices is better. 

Total time for computing all time slices for grid 65×65 consists of: 
1) initialization of MPI environment ~ 6 seconds 
2) broadcasting response functions ~ [number of slave processes] seconds 
3) computing all time slices ~ [3×number of time slices / number of slave processes] seconds  
4) writing output data to the output file ~ [number of time slices / 12] seconds. 

Conclusion 
We have described the importance of computing equilibrium reconstruction in tokamak. We have 

presented a derivation of the Grad-Shafranov equation and its use in the EFIT algorithm. We have also 
described our contribution to the development of the EFIT2006 code - its parallelization – and the 
performance gains achieved by running the parallelized EFIT2006 on multiple computers. We plan to 
run EFIT2006 with data from COMPASS-D tokamak provided by UKAEA, Culham in the near 
future. We also plan to continue our participation in further development of the EFIT2006 code.  
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