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Fluctuation-driven particle flux is greatly reduced in the plasma radial region where zonal flows are
present in the H-1 toroidal heliac. This occurs without reduction in the fluctuation level. Statistical
properties of fluctuations are significantly modified in this region. It is shown that the randomization of
phases of coherent structures by zonal flows is responsible for the observed effect. This mechanism of
transport reduction complements theoretically predicted random shearing of turbulence by zonal flows

and does not require the fluctuations suppression.
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Interaction between flows and turbulent structures is
the central point of the turbulence self-regulation concept
that is being developed with regard to the magnetized
plasmas. Both mean (time average) and the time-varying
shear flows can be generated by turbulence and both can
affect their parent waves and modify the turbulent trans-
port [1]. Time-varying shear flows, or zonal flows (ZF),
are nonlinearly generated by turbulence via the inverse
cascade mechanism [2]. ZF affect their parent fluctua-
tions [3] and the turbulent-driven fluxes [4] through the
mechanism of random shearing [5,6]. The small-scale
region of the turbulence spectrum is modified by ZF since
both the generation of ZF (inverse cascade) and the shear-
ing leading to the generation of smaller radial scales in
turbulence (forward cascade) occur due to the three-wave
interactions [4]. The simulation results also indicate that
ZF affect both the levels and the structure of the turbulent
transport [7-9].

The effect of ZF on large-scale structures is of no less
importance since if large turbulent structures are present
in the plasma their contribution to the fluctuation-driven
particle fluxes exceeds those driven by the small-scale
turbulence (see, e.g., [10]). This is the case, for example,
in the plasma turbulence described by the Hasegawa-
Mima equation [11].

In this Letter we present the first experimental results
showing that ZF greatly reduce turbulent fluxes and also
change statistical properties of coherent fluctuations
through the randomization of their phases. This transport
reduction occurs without the reduction in the fluctuations
amplitude. It is shown that the randomization in the
phases of the coherent structures occurs through their
stochastic Doppler shifts in the presence of ZF. These
results are very important for understanding the mecha-
nism through which ZF affect the turbulent transport.
They can also be useful as the indirect diagnostic of the
localization of zonal flows based on the statistical proper-
ties of turbulence.
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PACS numbers: 52.35.Ra, 52.35.Mw, 52.55.Hc

Recently we have reported the first observation of the
ZF in the low temperature plasma of the H-1 heliac
[12,13], a three-field period helical axis stellarator which
has a major radius of R = 1 m and a mean minor radius
of about (a) = 0.2 m [14]. Experiments described in
[12,13] and also in this paper were performed in the
plasma produced by ~60 kW of radio-frequency waves
at 7 MHz. Plasma parameters are as follows: n = 1 X
108 m=3, B, <0.1T, T, ~10eV, T; ~ 40 eV in argon
at filling pressures of ~3 X 107> Torr. Various combina-
tions of triple probes are used to characterize plasma
parameters. Triple probes provide measurements of the
ion saturation current /;, electron temperature 7, and the
plasma potential ¢,. The poloidal electric field is esti-
mated from two poloidally separated triple probes as
Ey = (¢,2 — ¢,1)/Ay. Simultaneously, we measure the
radial electric field using two triple probes, which are
separated radially: E, = (¢,, — ¢,1)/Ar. More details
on the probe geometry can be found in [13].

ZF having k, > ky = 0 (where k, and k, are the
radial and poloidal wave numbers of fluctuations) have
been observed in the so-called low confinement mode
(L-mode) plasma [12]. These low-frequency (fzp =
2-6 kHz) potential structures are generated nonlinearly
from the broadband turbulence via three-wave interac-
tions in the inverse cascade process [15].

ZF are not the only structures that are present in the
spectrum of the plasma electrostatic potential in L-mode.
Strong coherent features with k, = k, # 0, also generated
nonlinearly by the broadband turbulence [15], produce a
substantial particle flux which affects the plasma confine-
ment [16]. Radial profiles of the electron density and its
fluctuations are shown in Fig. 1(a). Profiles of the fluctu-
ation-driven flux, I'yy = (iiV,) = (AE,)/B, (B, is the tor-
oidal magnetic field), and of the relative level of the
fluctuations in the radial electric field due to the zonal
flow at f = 6 kHz, rms[E,(f = 6kHz)]/{E,), are shown
in Fig. 1(b). A remarkable correlation between the
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FIG. 1 (color online). Radial profiles of (a) the electron den-
sity and the root-mean-square level of its fluctuations and
(b) the normalized level of the ZF-driven fluctuations in the
radial electric field, rms[E,(f = 6 kHz)]/{E,), and of the fluc-
tuation-driven particle flux 'y, = (nE,)/B,.

maximum in the zonal flow and the minimum in I';; seen
in Fig. 1(b) is amplified by the fact that the reduction in
I'; is not due to the reduction in the fluctuation level but
rather due to the reduced correlation between 7i, and E,.
The structure of the time-resolved fluxes is illustrated in
Fig. 2 for two radial positions of Fig. 1 corresponding to
the minimum and the maximum of ZF While in the
absence of ZF, at r/a = 0.68 [Fig. 2(a)], the flux is domi-
nated by the positive (outward) bursts, and at the ZF
maximum positive and negative bursts nearly balance
each other resulting in the zero flux [Fig. 2(b)].

Statistical properties of 7, and E, also change in the
presence of zonal flows. Figure 3(a) shows radial profiles
of kurtosis and skewness of the poloidal electric field
fluctuations E,. Both are substantially reduced in the
radial region of r/a = (0.2-0.5). Note that for Gaussian
signals § = K = 0, so that the observed reduction in both
S and K is indicative of the Gaussian statistics of the
poloidal electric field fluctuations. Indeed, the probability
distribution functions (PDF) of E, at r/a = 0.37 has a
good Gaussian fit over 3 orders of magnitude as shown in
Fig. 3(c), while the PDF at r/a = 0.68 is strongly non-
Gaussian [Fig. 3(b)].

Frequency spectra of the fluctuations in the floating
potential, Vﬂ, poloidal electric field, E > and its phase are
shown in Fig. 4. Considering that several strong coherent

GJETER) T
0 00
i u

30 40 50 60 30 40 50 60

t (ms) t (ms)

FIG. 2. Time-resolved I';; measured in the radial regions

corresponding to the (a) minimum and (b) maximum of the
ZF level at r/a = 0.68 and at r/a = 0.37 correspondingly.
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FIG. 3 (color online). (a) Radial profile of kurtosis and skew-
ness of the fluctuations in the poloidal electric field; (b) and (c)
are the PDFs of £, measured at r/a = 0.68 and at r/a = 0.37
correspondingly.

features dominate the spectra, it is natural to expect
strongly non-Gaussian statistics of these fluctuations.
Zonal flow is present in the spectra of Figs. 4(d)—4(f). It
can be identified as a strong feature in the spectrum of the
potential fluctuations, Vfl, which is not present in the
spectrum of the poloidal electric field, E,, since ZF has
kg = 0. By comparing frequency spectra in Figs. 4(a)—
4(c) (weak zonal flow at r/a = 0.68) and Figs. 4(d)-4(f)
(maximum of the zonal flow at r/a = 0.37) we observe
that phases of strongest harmonics of £, become random
in the presence of the zonal flow. The spectra in Fig. 4
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FIG. 4 (color online). Frequency power spectra (PS) of
the fluctuations in the poloidal electric field £, and of
the phase of Ee measured at the (a)—(c) minimum and at the
(d)—(f) maximum of ZF at r/a = 0.68 and at r/a = 0.37
correspondingly.
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have been computed for the 32 ms long time samples of
signals. The samples are split into four overlapping time
segments, and the computed frequency spectra are then
averaged over four points. Such statistical averaging of
the spectral estimation of the fluctuation phases leads to
different results in the presence of ZF [Fig. 4(f)] and
without it [Fig. 4(c)]. While in the absence of ZF phases
are well-defined and the statistical averaging leads to a
fast convergence of the spectral estimation to some finite
(though physically irrelevant) value [Fig. 4(c)], at the ZF
maximum phases are statistically independent in differ-
ent realizations, their average is randomly distributed,
and it does not converge as fast to a finite value. This
statistically unstable spectral estimation of the fluctuation
phase is indicative of the phase randomization. The ran-
domization of phases of the E ¢ harmonics, similar to that
seen in Fig. 4(f) is observed only in the presence of zonal
flows. Note also that the spectral broadening of the fea-
tures at the ZF maximum [Figs. 4(d) and 4(e)] is notice-
ably increased.

The level of the three-wave interactions in the spectra
exhibiting turbulent structures (including ZF) has been
shown to be high in our conditions [12]. It is well-known
that the characteristic nonlinear interaction time and the
level of the three-wave interactions depend on whether
phases of the interacting waves are coherent or random
[17]. The transition from the coherent phase approxima-
tion to the random phase limit coincides with the spectral
broadening of the wave packets and with the reduction in
the coherence of the participating waves [17].

The phase randomization of the coherent spectral fea-
tures in the presence of ZF in our experiment indeed leads
to a reduced phase coupling between these modes. A
quantity that characterizes a degree of phase coupling
in the spectrum is the autobicoherence, or normalized
bispectrum [18] defined as b7(f1, f2) = B(f1, f2)*/
[IEgs1 Egpol*YP(f)], where B(f), fz) =(Egs1EopEyy) is
the autobispectrum and P(f) is the autopower spectrum.
We also compute the summed bicoherence, SB(f) =
Di=fi+fs b}(f], f2). This quantity gives a measure of
the total phase coupling to the frequency f from all
frequencies f; and f, in the spectrum satisfying f =
f1+ fa

Figure 5 shows the frequency spectrum of the summed
autobicoherence for spectra of Fig. 4. Here the threshold
for the SB computation is set to include contributions to
the bispectrum from the spectral components whose am-
plitudes are greater than 1072 of the maximum of the
spectrum. Thus we estimate only the phase coupling
between strongest harmonics and exclude contributions
from the three-wave interactions in the broadband part of
the turbulence spectrum. From Fig. 5(a) we observe that
in the presence of ZF the SB is reduced for most of the
spectral features by a factor of at least 2. When the
contribution to the bispectrum from the broadband tur-
bulence is included by thresholding computations to the
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FIG. 5 (color online). Summed autobicoherence of Ea com-
puted for signals measured at r/a = 0.68 (solid) and at r/a =
0.37 (dotted) for two thresholds in the spectral power density:
(a) Pthreshold 107 2 and (b) Pthreshold 10 8

level of 1078 of the maximum of the spectrum, no re-
duction in the summed autobicoherence is observed
[Fig. 5(b)]. This seems to be natural because waves with
random phases dominate three-wave interactions in the
broadband part of the spectrum.

We model the spectrum of the coherent fluctuations in
the form

5
Y = ZAi sinfw; + 0"(7)]t + noise, (1)
i=1

where we introduce a small random correction @™ to
the phase of each of the coherent harmonics. Here @™
changes randomly in the range between *w'. The
statistical moments and the total summed bicoherence
(=2 ;SB(f)) are computed for the model signal of
Eq. (1). Kurtosis and skewness are shown in Fig. 6(a)
versus the degree of randomization defined as DR =
@' /@;. The noise level was zero in these calculations.
At DR = 0.1 the skewness of the signal is substantially
reduced, while kurtosis becomes negative as seen in
Fig. 6. The total summed bicoherence of the signal
[Fig. 6(b)] is reduced at DR = 0.1 by almost 2 orders
of magnitude. The addition of the random noise to the
signal of Eq. (1) does not change the moments and the
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FIG. 6 (color online). (a) Kurtosis and skewness of the model
signals of Eq. (1) and (b) the total summed autobicoherence
versus the degree of the phase randomization.
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bicoherence as much, even when the signal is below the
noise. This elementary model qualitatively reproduces
basic observations of Figs. 3 and 5.

The reported results can be interpreted as follows. The
velocity of the poloidally propagating coherent structures
is Doppler shifted by the lower-frequency zonal flow as

Eﬁk Sill|:<(1)k + kg E’;Q) >t:|, (2)

where () is the frequency of the zonal flow seen as the
time-varying radial electric field. If this Doppler shift
introduces some randomization in the phase of the prop-
agating potential structure, this would be equivalent to
the introduction of the random phase correction @™
in Eq. (1), affecting both higher- and lower-frequency
modes. The degree of randomization by ZF can be esti-
mated from the broadening of the zonal flow spectrum as
[koE,(Q)/B,]- (AQ/Q), where AQ/Q = 0.1 as seen in
Fig. 4(d). For the experimentally measured parameters
(W{E?)=200V/m, B,=006T, k,=40m™', w, =
10° s7!) we estimate that this noncoherence in the zonal
flow is equivalent to the degree of randomization of
DR = 0.1.

The fluctuation-driven particle flux is defined in the
frequency domain as [19]

2 00
Ffl - Eﬁ dw[P”PE]1/2|7nE| Cos[anE]’ (3)

where 0 < |y,z| =1 and a5 are the coherence and the
phase shift between 7i, and E, correspondingly and P,
and Py are the spectral densities of the fluctuations.
Equation (3) shows that the particle flux can be reduced
by suppressing the turbulence (P, and Pg reduction),
by decorrelating density and potential fluctuations
(v, — 0), or by changing the relative phase «,; between
them. The phase randomization in either 7, and E, or
both should result in the decrease of the time-average
coherence, 7,5, between these fluctuations and may also
change the cross phase, «,. This would affect the fluc-
tuation-driven particle flux without suppressing the fluc-
tuations, as it has been observed in the reported
experiments.

To summarize, we have observed a strong reduction in
the fluctuation-driven particle flux in the presence of
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zonal flows. Zonal flows have been shown to change
statistical properties of the fluctuations due to the ran-
domization of phases of coherent structures dominating
spectra. These observations are qualitatively consistent
with the model of the random Doppler shift of the turbu-
lent structures by zonal flows.

One of the authors (M.S.) thanks P. H. Diamond and
M. A. Malkov for useful discussions of the results.
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