
INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED FUSION

Plasma Phys. Control. Fusion 44 (2002) 567–578 PII: S0741-3335(02)31687-7

Measurements with an emissive probe in the CASTOR
tokamak

Roman Schrittwieser1,6, Jiřı́ Adámek2, Petru Balan1, Martin Hron2,
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Abstract
An emissive probe has been used in the edge region of the CASTOR tokamak in
order to test the possibility of direct measurements of the plasma potential. The
difference between the floating potential of a cold probe and that of an emissive
probe has been found to be approximately 1.3 times the electron temperature,
which is less than predicted by the probe theory. Several possible reasons
to explain this discrepancy are offered, such as secondary electron emission,
uncertainties in the ion temperature, different collecting areas for electrons and
ions, etc. The possible impact of a space charge formed by the emitted electrons
is also discussed.

1. Introduction

Particle and energy confinement in magnetized plasmas are strongly influenced by electric
fields and their fluctuations [1]. Electric fields are determined by gradients of the plasma
potential. In the edge region of fusion devices, the plasma potential is usually deduced from
the floating potential measured by Langmuir probes. The difference between the floating
potential Vfl and the plasma potential � is a function of electron and ion temperatures and
possibly also other parameters:

Vfl = � − f (Ti, Te, . . .). (1)

This technique is comparatively simple and provides the local information with a satisfactory
temporal resolution.
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However, this indirect evaluation is potentially subject to errors, due to the uncertainty in
the knowledge of the function f and of its variables. This is particularly true for turbulence-
induced particle fluxes, which require the knowledge of the fluctuating electric field [2].
These complications could be circumvented using a technique able to directly measure the
plasma potential. One suitable technique for the edge region of small fusion devices is the
emissive probe, which is often used for low-temperature plasma diagnostics. This is an actively
heated probe, which emits electrons. As long as such a probe is not heated, it will be called
cold probe.

In this paper we present measurements of the floating potential profile of an emissive
probe in the boundary plasma of a tokamak. In section 2 we specify the function f introduced
in equation (1). Section 3 explains the principle of emissive probes. Section 4 describes the
experimental apparatus. In section 5 the results of the experiments, performed on the CASTOR
tokamak, are presented. Section 6 discusses the results, while the conclusions are drawn in
section 7.

2. Floating potential of a cold probe

The interpretation of the probe measurements in tokamaks is usually based on the elementary
Langmuir probe theory, which provides the relation between the plasma and the floating
potential, assuming a Maxwellian electron velocity distribution. The magnetic field is taken
into account only by reducing the effective collecting area of the probe. If the probe voltage
Vp (measured with respect to a reference electrode) biases the probe negatively with respect
to the plasma potential �, the probe current Ip is the sum of the electron and the ion currents:

Ip = Iis(1 + γi) − Ies(1 − γe) exp

[
−e(� − Vp)

kBTe

]
, (2)

where Ies and Iis are the electron and ion saturation currents, kB is the Boltzmann constant and
Te is the electron temperature. The coefficients γe and γi characterize the contribution of the
secondary electron emission to the probe current induced by electrons and ions, respectively
(a more detailed discussion is given in section 6). In a strongly magnetized, fully ionized
tokamak plasma edge, equation (2) is strictly valid only for probe potentials lower than the
floating potential (see e.g. [3]). At the floating potential Vp = Vfl the total probe current Ip

equals zero. Then, the normalized difference between the floating and the plasma potential is

� = e(� − Vfl)

kBTe
= ln

(
(1 − γe)

(1 + γi)

Ies

Iis

)
. (3)

The electron saturation current Ies is given by the random thermal current density jes

multiplied by the probe collecting area for electrons Ae:

Ies = Aejes = Ae
1

4
en

√
8kBTe

πme
, (4)

with me being the electron mass.
The ion saturation current in a pure, fully ionized hydrogen plasma is [4]

Iis = Aijis = Aien

√
kB(Te + Ti)

mp
, (5)

where Ai is the collection area for ions, n is the electron density at the edge of the probe sheath,
Ti is the ion temperature and mp is the proton mass.
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At high magnetic fields, there can be a considerable difference in the effective collecting
areas for electrons and ions due to the large difference between the ion and electron gyro-radii
ρi,e. In the case of a cylindrical probe, ρi,e has to be compared to the probe radius rp.

Neglecting secondary electron emission, for a hydrogen plasma, equation (3) reads

� = ln

(
Ae

Ai

√
Te

Te + Ti

√
mp

2πme

)
. (6)

At modest magnetic fields (like in CASTOR) ρi � rp holds for ions, whereas the contrary
is valid for electrons, i.e. ρe � rp. Therefore in the surroundings of the probe, ions can
be considered unmagnetized whereas electrons are strongly magnetized. Thus for ions we
have to take into account the entire surface of the probe wire as effective collecting area, while
electrons ‘see’ only the cross-section of the probe wire.

3. Emissive probe

An emissive probe usually consists of a small loop of tungsten wire, heated by an external
DC current so that the tungsten wire becomes emissive [5–10]. It is worth noting that even
usual cold probes can become self-emissive in hot plasmas due to heating by the high-energy
fluxes [11].

The probe loop used in our experiment consists of a tungsten wire with a radius rp and
a length lp. Following the arguments above, for ions the effective collecting area is the total
surface of the wire, i.e. Ai = 2rpπlp. For electrons, however, flowing from both sides towards
the probe wire, the effective collecting area is given by twice the cross-section of the wire, i.e.
Ae = 4rplp, and Ae/Ai = 2/π . Only for the extreme case where the loop is perfectly aligned
to the magnetic field lines, the area would reduce to Ae = 2rplp since the inner side of the loop
wire would be shaded by the opposite outer sides of the wire.

If the probe is not heated, for γe = γi = 0 and Ae/Ai
∼= 2/π , equation (6) becomes

� = ln

(
2

π

√
Te

Te + Ti

√
mp

2πme

)
. (7)

For Te = Ti, the value of � is equal to 2.04, and from equations (4) and (5) we find that
Ies/Iis

∼= 7.7.
The saturated thermal electron emission current density jem is given by the Richardson–

Dushman formula [12]:

jem = A∗T 2
w exp

[
− eWw

kBTw

]
. (8)

In this expression A∗ is the Richardson constant, equal to 7.4 × 105 A m−2 K−2 for tungsten,
and Tw and Ww are the temperature and the work function of the wire material, respectively.
Ww is 4.55 eV for tungsten.

In order to derive a quantitative expression for the potential of a floating emissive probe,
we will discuss two cases: one with the emission current independent of Vp, and the other by
taking into account space charge effects by the emitted electrons.

3.1. Saturated emission

The electrons emitted by the probe yield a current, which adds to the electron and ion currents
coming from the plasma. The total probe current is therefore

Ip = Iis(1 + γi) − Ies(1 − γe) exp

[
−e(� − Vp)

kBTe

]
+ Iem, (9)
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where Iem = jemAem is the emission current, Aem is the effective emitting surface, which
is supposed to be equal to the total surface of the probe wire; therefore Aem = Ai. In the
following simple analysis, we assume that Iem is independent of the probe potential as long
as this potential is negative with respect to the plasma potential. The normalized difference
between the floating and the plasma potentials for this case will be denoted by �em, which,
following the approach of section 2, can be written as

�em = e(� − V em
fl )

kBTe
= ln

(
Ies(1 − γe)

Iis(1 + γi) + Iem

)
. (10)

V em
fl denotes the floating potential depending on the emission current.

This expression shows that by increasing the emission, the probe floating potential
theoretically approaches the plasma potential (�em → 0). The probe attains the plasma
potential for

Ies(1 − γe)

Iis(1 + γi) + Iem
= 1. (11)

After insertion of equations (4) and (5), and again under the assumption that Ae/Ai
∼= 2/π ,

equation (11) becomes

Iem

Iis
= 2

π

√
Te

Te + Ti

√
mp

2πme
− 1. (12)

For Te = Ti, we can calculate that the ratio of emission current to ion saturation current,
necessary to make the floating potential of the probe equal to the plasma potential, is
Iem/Iis

∼= 6.7. If the probe temperature is further increased, part of the emitted electrons
will be reflected by the plasma, keeping the probe at the plasma potential.

We note that by neglecting the difference between the effective collecting areas for
electrons and ions, i.e. by putting Ae/Ai

∼= 1, we obtain � ∼= 2.49, Ies/Iis
∼= 12 and

Iem/Iis
∼= 11.

3.2. Space charge limited emission

The treatment above is valid as long as space charge effects by the emitted electrons can be
neglected. As pointed out recently by Reinmüller [13] and Ye and Takamura [14], for strong
electron emission a negative space charge might form around the emissive probe, which would
lead to a modification of the floating potential of the probe with respect to the case discussed
in section 3.1.

In order to get a rough quantitative idea about this effect, we make the following
consideration. Suppose that the emission current is controlled by space charge effects; in
equation (9) we replace Iem by the Child–Langmuir expression [15]:

ICL(Vp) = Aem
4ε0

9

(
2e

me

)1/2
(� − Vp)

3/2

d2
, (13)

where d is the sheath thickness. In the case of an emissive probe in a plasma, d is proportional
to the Debye length, d = kλDe. With this, at the floating potential V CL

fl , equation (13) becomes

ICL(V CL
fl ) = Aem

4nee

9k2

(
2kBTe

me

)1/2 [
e(� − V CL

fl )

kBTe

]3/2

. (14)

Equating the total probe current (neglecting secondary electron emission) to zero,
equation (9) for this case becomes

0 = Iis − Ies exp

[
e(� − V CL

fl )

kBTe

]
+ ICL(V CL

fl ). (15)
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We emphasize that in this case V CL
fl does not depend on the emission current.

In analogy to equation (3), we define

�CL = e(� − V CL
fl )

kBTe
. (16)

For further analysis it will be useful to normalize the Child–Langmuir current to the electron
saturation current Ies, given by equation (4). Therewith we obtain

ICL

Ies
= Aem

Ae

2
√

π

9k2
�

3/2
CL ≡ K�

3/2
CL , (17)

with

K ≡ Aem

Ae

2
√

π

9k2
.

Using equations (16) and (17), equation (15) becomes

Iis

Ies
+ K�

3/2
CL − exp(−�CL) = 0 (18)

For Aem/Ae = Ai/Ae = π/2, and for d ∼= λDe (k ∼= 1), the solution of this equation delivers
�CL

∼= 0.7. This means that the floating potential of the emissive probe saturates 0.7kBTe/e

below the true value of the plasma potential. This is due to the formation of a virtual cathode
inside the probe sheath. A similar drop of the floating potential on the order of Te has been
derived in [14], using a more sophisticated approach. We point out that this effect is practically
independent of the ion mass.

4. Experimental set-up

The emissive probe (see figure 1) used for the potential measurements in the CASTOR tokamak
consists of a ceramic tube (Al2O3) with an oval cross-section of 1.4/2.3 mm outer diameter
and a length of 8 cm. The Al2O3 tube has two bores of 0.7 mm diameter each, through which a
0.2 mm diameter tungsten wire is inserted in such a way that on one side of the tube (at the ‘hot
end’) a tungsten wire loop of an approximate total length of 6 mm is formed. Inside the bores,

Figure 1. Schematic of the emissive probe head used for measurement on the CASTOR tokamak.
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the tungsten wire extends at least 5 cm towards the other end (the ‘cold end’) of the ceramic
tube. Before the insertion, each tungsten wire is spliced twice with about 18–20 copper threads
with diameters of 0.05 mm [8]. In this way, inside the bores the tungsten wires are densely
covered with a thin layer of copper so that the conductivity of these parts is increased.

The wrapping of the tungsten wires with copper threads is done in such a way that
the electrical and mechanical contact between the tungsten and the copper is very good. The
contact is further improved by the roughness of the tungsten wire and the softness of the copper.
By a careful choice of the number of copper threads by which the tungsten wire is wrapped,
the thickness of the combined wire can be adjusted so that it tightly fits into the bores of the
Al2O3 tube. This provides an excellent electrical and mechanical contact between the two
materials, which can otherwise not be soldered or welded together. On the cold end of each
tube, only the spliced copper wires are protruding and can there be connected easily to any
further electrical lead. Figure 1 shows a drawing of the emissive probe.

This construction has the effect that only the exposed loop of the emissive probe is heated
when a current is passed through the probe wire. The total resistance of such a probe is about
0.11 �. The plane of the probe loop is directed parallel to the magnetic field, thus minimizing
the Lorentz force on the loop wire.

In order to maximize the lifetime of the probe wire, the probe heating current was
only turned on a few seconds before each shot and was kept constant until the end of the
discharge. The wire attained a temperature of about 2900 K. This was calculated from the
experimentally determined emission current Is (see below) and confirmed roughly by an optical
pyrometer.

The CASTOR tokamak has a major radius of 0.40 m and a minor radius of a = 85 mm,
the latter being determined by a poloidal ring limiter. The background pressure was smaller
than 10−4 Pa. Before each discharge, the chamber was filled with hydrogen up to a pressure
of around 10−2 Pa. The typical duration of each shot was 30 ms. The toroidal magnetic field
was 1 T, and the toroidal plasma current was typically 10 kA. The typical line average plasma
density was 1019 m−3. In the SOL the plasma density was 0.5–2 × 1018 m−3, and Te was on
the order of 10 eV.

Figure 2 shows the experimental arrangement in the CASTOR tokamak schematically.
The emissive probe is mounted on a manipulator by which it can be shifted radially on a
shot-to-shot basis in the range of radii 50 < r < 100 mm. Also visible there is the position of
the biasing electrode.

5. Experimental results and discussion

A sinusoidal sweep voltage Vp with the amplitude up to ±100 V with a frequency of 1 kHz was
applied to the probe during the stationary phase of the tokamak discharge. About 20 probe
characteristics were recorded in each discharge with a sampling rate of 1 MHz.

Figure 3 shows three typical characteristics of the emissive probe: without heating and for
two heating currents. The ion saturation current and the emission current are positive in this
diagram. It is clearly seen from the figure that the left-hand branch (i.e. the ion branch) of the
characteristic is strongly increased by the electron emission. The solid lines are least-square
fits of the experimental points with the following function:

Ip(Vp) = IsG(Vp)

{
1 − exp

[
e(Vp − V ∗

fl )

kBTe

]}
. (19)

The asterisk in this equation and hereafter will denote the experimentally obtained values of
the floating potential and of other quantities.
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Emissive Probe Biasing Electrode

Figure 2. Experimental arrangement of the radially movable emissive probe in the CASTOR
tokamak.
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Figure 3. Three typical probe characteristics, taken with the cold probe and the emissive probe at
two different heating currents. The solid lines are fits of the characteristics by equation (19).

The ad hoc multiplying factor G(Vp) = 1 − c[e(Vp − V ∗
fl )/kBTe]α is phenomenological,

and describes the non-saturation of the ion branch of the experimentally observed probe
characteristics. It is worth noting that the value of the exponent α is not critical, and we
used α = 1.5. Equation (19) is a four-parameter (Is, c, V ∗

fl , Te) fitting function. The parameter
Is represents the sum of the ion saturation current Iis and the emission current I ∗

em at the floating
potential, where we suppose that this value is constant for Vp < V ∗

fl . The fit was performed
up to voltages slightly above the floating potential, thus neglecting the electron saturation part
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(r = 85 mm), and the open circles are for the confined plasma (r = 70 mm).

of the characteristic. Although the electron temperature was obtained for each value of the
emission current I ∗

em, only the value Te for the non-heated probe (I ∗
em = 0) was used for further

processing. The measured values of Te from 10 to 15 eV agreed well with previous Langmuir
probe measurements in the CASTOR tokamak [16]. An estimate of the emission current has
been obtained by taking Iis at I ∗

em = 0.
In figure 4 the quantity �∗−�, which represents e(V ∗

fl −Vfl)/kBTe, is plotted as a function
of the normalized emission current I ∗

em/Iis for two radial positions of the probe. In agreement
with equation (10) the quantity �∗ − � rises steeply at small emission currents, and finally
reaches saturation. As we see, the normalized difference between the floating potential of the
cold probe Vfl and its saturated value V ∗

fl,sat amounts to 1.3kBTe/e. Moreover, the saturation is
reached for an emission current on the order of ten times the ion saturation current.

As an illustration of its applicability as an edge plasma diagnostic tool in magnetic
confinement devices, the emissive probe has been used in CASTOR under different discharge
conditions. The radial profile of the saturated floating potential of the emissive probe V ∗

fl,sat was
measured not only in Ohmic discharges, but also in regimes where the radial electric field at the
plasma edge was modified by a biased electrode [17]. As an example, figure 5 demonstrates
the experimentally obtained radial profiles of V ∗

fl,sat (with respect to the wall) both for Ohmic
and biased conditions. The biasing electrode was located at r = 73 mm, which corresponds to
the position of the last closed flux surface, and was biased with respect to the wall to +100 V.
In agreement with our previous experiments, the gradient of the potential is modified not only
between the electrode and the wall, but also in front of the electrode (separatrix biasing). The
radial electric field during biasing increases up to Er

∼= −10 kV m−1.

6. Discussion

We successfully performed measurements with an emissive probe in the edge region of
the CASTOR tokamak, both inside and outside the last closed flux surface. The use of an
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Figure 5. Radial profile of the plasma potential in the edge region of the CASTOR plasma in
the Ohmic ( ) and polarized phases (•) of the discharge (the biasing electrode is positioned at
rb = 75 mm and biased to Vb = +100 V).

emissive probe has allowed us to check the standard Langmuir theory and to show that the
simple interpretation of its floating potential as the plasma potential may not be straightforward.
In fact, the saturated normalized difference �∗−� between the floating potential of an emissive
probe and of a cold probe was experimentally found to be 1.3 (see figure 4). This is smaller than
predicted by the simple theory in equation (7) (without space charge effect), which has yielded
2.04, under the assumption that the saturated value corresponds to the plasma potential. There
are a number of effects which might shift the floating potential of the cold probe upwards,
thereby reducing the difference � (=2.04) following from the simple theory. These effects
are listed and discussed below undercases (a)–(f).

On the other hand, by taking into account space charge effects, the measured value of
�∗ − � = 1.3 would be in agreement with the estimates in section 3.2. In this case the
saturated value �∗ would correspond to −�CL. Thus, we cannot be sure how the saturated
value observed in figure 4 is related to the true value of �.

Figures 6(a) and (b) demonstrate the difference between these two models by schematically
presenting �em versus the emission current normalized to the ion saturation current. Thus,
both figures can be compared to figure 4. Note, however, that in figures 6(a) and (b) the origin
of the y-axis is taken at the plasma potential, while in figure 4 it is put at the floating potential
of the cold probe. Figure 6(a) presents three possible cases without space charge effect:

• The dotted line corresponds to the case for equal collecting areas for electrons and ions,
i.e. Ae/Ai = 1, and thus � = 2.49 and Ies/Iis

∼= 12 (equation (7)).
• In the case of the solid line, Ae/Ai

∼= 2/π and thus � = 2.04 and Ies/Iis
∼= 7.7

(equation (7)).
• The dashed line presents the case (also for Ae/Ai

∼= 2/π) where the combined influence of
all effects (a)–(f) (listed below) that can lead to a shift of the cold probe floating potential
is taken into account. Here we find that � ∼= 1.4 and Ies/Iis

∼= 4.

Figure 6(b) schematically presents �em for the space charge case only, where it is found
that the saturated floating potential of the probe is shifted downwards by �CL

∼= 0.7. We
emphasize that in figure 6(b) the saturation of �em sets in already at Iem/Iis

∼= 5. The dashed
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Figure 6. Theoretical difference between the plasma potential and the floating potential of an
emissive probe, normalized to the electron temperature, plotted versus the electron emission current,
normalized to the ion saturation current. (a) No space charge effects: dotted line for Ae = Ai,
thus � = 2.48 and Ies/Iis = 12, saturation starts at Iem/Iis = 11; solid line for Ae/Ai = 2/π ,
thus � = 2.04 and Ies/Iis = 7.7, saturation starts at Iem/Iis = 6.7 (equations (11) and (12)); the
dashed line is taking account of the shift of the cold probe floating potential due to the effects listed
in section 6 under (a)–(f); this reduces � to about 1.4 and Ies/Iis to about 4 and Iem/Iis = 3 where
saturation starts. (b) Taking into account space charge effects of the emitted electrons: in this case
the saturated value of �em does not reach the plasma potential but remains below by �CL

∼= 0.7;
saturation starts for Iem/Iis

∼= 4.

line in figure 6(a) saturates even already for Iem/Iis
∼= 3, the solid line at Iem/Iis

∼= 6.7, and
the dotted line at Iem/Iis

∼= 11.
The following effects can influence the floating potential of a cold probe in a hot magnetized

plasma:

(a) Secondary electron emission caused by plasma electrons impacting on the probe surface:
The secondary electron emission from the probe surface induced by impinging plasma electrons
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shifts the floating potential upwards by the amount ln(1 − γe), as is evident from equation (3).
According to [18], the secondary electron emission coefficient of tungsten (the material used
for the present experiments) for 100 eV monoenergetic electrons would be of the order of 0.3.
This would give a reduction of � (compared to � at γ = 0) by 0.36. Pitts and Matthews [19]
measured the value of γe under a realistic electron energy distribution function and in a strong
magnetic field with normal incidence to a molybdenum surface, and found it to be close to
one. However, this would reduce � to almost zero, so that the cold probe would automatically
be at the plasma potential. This obviously contradicts our experimental observation, since we
do observe a reduction of � with increasing thermal electron emission.

(b) Secondary electron emission caused by plasma ions impacting the probe surface:
Plasma ions can also give non-negligible secondary electron emission, although this effect
is usually not taken into account in tokamak probe diagnostics. For 100 eV monoenergetic
protons impinging on several types of metal, the secondary emission coefficient γi has been
measured to be as high as 0.2 [20]. Pitts and Matthews [19] also obtain a similar number for a
realistic ion energy distribution acting on molybdenum. This gives a reduction of � by 0.18.

(c) Ion temperature: Measurements of Ti in the tokamak edge are seldom available, but
investigations in other comparable tokamaks [19,21] indicate that sometimes Ti might be higher
than Te. If we assume Ti > Te by a factor of four, equation (6) predicts a decrease of � by 0.45.

(d) Impurities: The assessment of the contribution of impurities to the difference �∗ − �

is negligible as compared to the other effects discussed here. A detailed analysis can be found
in [22].

(e) Electron and ion drifts: The presence of plasma flows can affect the value of the
floating potential [10, 23]. The same will happen in the case of a parallel flow of electrons,
which will distort the electron distribution function from the Maxwellian shape and alter the
electron current collected by the probe [24]. The impact of such effects can be hardly estimated
without a knowledge of the Mach number and of the form of the electron distribution function.

(f) Different collecting areas for electrons and ions (further considerations): Due to the
complicated geometry of the emissive probe, the effective collecting area for electrons can
even be smaller than Ae = 4rplp, whereas that for ions would not be affected. However,
those electrons impinging on the probe near the top where the loop has its strongest curvature
only partly graze the probe surface and therefore contribute less to the total electron current.
Moreover, in the same region the wire surface inside the loop is not accessible for all electrons
since it is partly shaded. Therefore Ae < 2Ai/π . As mentioned above, in the most extreme
case, when the loop is exactly parallel to B, Ae = Ai/π . Such an effect reduces the normalized
difference �, which for the latter case attains even a value of 1.34. This would agree very well
with the experimentally observed value.

7. Conclusion

The above discussion shows that there are several reasons, because of which the difference
between the potential of the emissive and the cold probe is only 1.3 times the electron
temperature, which is less than the canonical value 2.04 predicted by the probe theory. This
discrepancy could be explained either by space charge effects or by a number of effects
discussed above. Additional experiments will be performed to distinguish between these
two possibilities.

In spite of the fact that the interpretation of our experiments is not yet definitive, we have
already started to use the emissive probes for fluctuation measurements.
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