
Autocorrelation analysis and statistical consideration for the determination
of velocity fluctuations in fusion plasmas

A. Benczea! and S. Zoletnikb!

KFKI-RMKI, Association EURATOM, P.O. Box 49, H-1525 Budapest, Hungary

sReceived 15 September 2004; accepted 22 March 2005; published online 11 May 2005d

A new statistical method is proposed and investigated to detect modulation in the poloidal flow
velocity via the motion of turbulent eddies. The technique needs a single-point measurement only,
and investigates modulation of the autocorrelation function. In order to evaluate the sensitivity of
the method an analytical expression is derived for the relative scatter of the autocorrelation function
when the fluctuating signal is composed of random events with a given event rate. Detailed formulas
are obtained for the case of identical Gaussian pulses. The result of the calculation allows estimation
of the scatter of the autocorrelation function due to both event statistical and detector noise. ©2005
American Institute of Physics. fDOI: 10.1063/1.1909200g

I. INTRODUCTION

Hot plasmas, as a complex system of charged particles,
are governed by nonlinear dynamics, hence often they are
found in a turbulent state. One example is anomalous trans-
port in fusion plasmas which is generally considered to be a
consequence of plasma microturbulence. Recent theories de-
scribe a coupled system of turbulence and flows generated by
the turbulent Reynolds stress1 or other secondary nonlinear
processes.2 These flows react on background turbulence by a
shear flow decorrelation mechanism,3 therefore their charac-
terization is essential. Temporally fluctuating and radially lo-
calized flowsscalled zonal flowsd have also been seen in
recent numerical simulations of fusion plasmas4 and we have
an increasing number of experimental indication to their
existence5–8 as well. However, most of these experimental
evidences were collected either in low-temperature devices,
where material probes can be immersed into the plasma, or
in special diagnostics available only at some machines.

Several of the above experimental results were obtained
by measuring changes in the poloidal flow velocity of turbu-
lent structures9–11 via poloidally resolved fluctuation diag-
nostics. This paper investigates the possibility of detecting
B-perpendicular flow modulations through observing tempo-
ral variations of the autocorrelation function in a single-point
measurement of plasma turbulence. In order to calculate the
sensitivity of the method we found it essential to analyze the
statistical scatter of the autocorrelation function due to two
effects: the finite number of turbulent eddies and/or detector
statistical noise. The final result of this derivation is a simple
expression readily usable to various measurements. As an
application of the method we present the analysis of the
dominant error source in beam emission spectroscopysBESd
turbulence measurements on the Wendelstein 7-AS
stellarator.12

II. EXTRACTION OF INFORMATION ABOUT VELOCITY
FLUCTUATIONS FROM CORRELATION
FUNCTIONS

Correlation analysis is a useful and well-known tool in
turbulence studies of fusion plasmas. Measuring correlation
functionssautocorrelation and cross correlationd one can ob-
tain a detailed picture about the space-time structure of tur-
bulence. As we would like to detect fluctuations in the po-
loidal flow velocity, we need an idea about the motion of the
turbulent structures. In experiments, e.g., Doppler reflectom-
etry, one can detect the group velocity of density perturba-
tions in a given poloidal plane, which has the formv'

=vE3B+vturb, wherevE3B is the background drift flow and
vturb the intrinsic phase velocity of the vortex modes. Dop-
pler reflectometry results show13 that the group velocity of
propagating density perturbations follows the profile ofE
3B velocity measured with passive spectroscopy or with
active charge exchange recombination spectroscopy, indicat-
ing that the intrinsic phase velocity of the perturbations
riding on the background plasma must be small.

Investigating correlation functions we can get informa-
tion about statistical properties of turbulent structures: the
correlation time, the correlation length along a spatial coor-
dinate, and the propagation velocity from cross-correlation
function. From a very simple model which deals with poloi-
dally moving structures having Gaussian shape both in space
and time, we can calculate the autocorrelation time in a
single-point measurement as a function of the eddy lifetime
tlife and the velocity dependent propagation timetv:

tcorr =
tlifetv

Îtlife
2 + tv

2
, s1d

wheretv=wf /vf ,wf is the poloidal correlation length and
vf is the poloidal flow velocity. From this formula it is clear
that we have two distinct limiting cases, which are given
below.

sid tlife @tv: For a fixedwf spatial correlation length the
correlation timetcorr depends mainly onvf; tcorr<wf /vf. In
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this case from the correlation time we can follow the time
evolution of thevfstd flow velocity, therefore we can calcu-
late the spectrum of velocity fluctuations.

sii d tlife !tv: In this case the correlation time gives infor-
mation about the eddy lifetime and the flow velocity cannot
be deduced. It has to be noted that in this case the velocity
determination from the cross-correlation function also be-
comes difficult due to the small shift of the maximum rela-
tive to the width.

Of course the situation can be more complicated when
the eddy lifetime is in the same order of magnitude astv. In
this case we have to do poloidally resolving14 or two-
dimensionals2Dd sradial-poloidald measurements15,16 in or-
der to distinguish the effect of velocity from the eddy turn-
over time. However, iftlife does not depend on the flow
velocity, then the modulation of thetcorr correlation time will
reflect the modulation of the flow velocity, albeit with a sen-
sitivity depending on thetv /tlife ratio. This is shown in Fig.
1, where sdtcorr/tcorrd / sdtv /tvd is plotted as a function of
tv /tlife on the basis of Eq.s1d.

The method presented in this paper assumestlife @tv.
We intend to derive the flow velocity fluctuations from
modulation of thetcorr correlation time determined from
short time signals as is shown in Fig. 2. There are clearly
cases when thetlife @tv relation is supported by experimen-
tal results13 but, of course, it has to be verified case by case.

To assess the minimum length of the time interval
needed for the determination of the correlation functionsand
thus the temporal resolution of the methodd we need to cal-
culate the statistical scatter of the correlation function. This

scatter arises from two sources:sid In a short time interval we
observe only a limited number of turbulence events and ran-
dom overlapping between different events produces a statis-
tical scatter of the calculated correlation values,sii d the mea-
sured signal often includes some kind of detector noise, e.g.,
due to the limited number of photons detected in BES or
electron cyclotron emissionsECEd measurements. In the fol-
lowing sections we calculate the relative scatter of the auto-
correlation function due to these effects.

III. RELATIVE SCATTER OF THE AUTOCORRELATION
FUNCTION DUE TO FINITE NUMBER OF EVENTS

We do the calculations in two steps. In the first part we
derive the tendencies without any assumption on the tempo-
ral shape of the fluctuation events. In the second part we
calculate the detailed expression for the case of uniform
Gaussian pulses.

A. General case

In our calculation we assume that we have a measured
time signal which consists of randomly distributed, limited
temporal length events, including overlapping as well. Each
event has a time evolution and it is described by a set of
random variablesswith a given but otherwise arbitrary dis-
tribution functiond such as the amplitude, the lifetime, the
time center, etc. As we would like to calculate statistical
properties we have to define different statistical averages or
expectation values. We will use two different notations. The
first one is for the time averages:

whereSstd is the measured time signal andwt is the expec-
tation value of the event lifetime. The second notation is
used for averages over random variables describing all the
events which constitute theSstd signal:

kSst;mdlm =E PmSst;mddm, s2d

where m=hj1,j2,… ,ji ,… ,jnj represents a set a random
variables with a set of distributions Pm

=hPsj1d ,Psj2d ,… ,Psjid ,… ,Psjndj. This way the formal
definition written above involves multiple integrals over each
of the random variables.

If we have a time signalSstd the autocovariance function
sautocorrelation without normalizationd can be calculated as

FIG. 1. Ratio oftcorr modulation totv modulationsdtcorr/tcorrd/sdtv /tvd as a
function of tv /tlife.

FIG. 2. Sketch of two-pointsleftd and one-pointsrightd
correlation measurements for velocity fluctuations. In
the two-point measurement the maximum place of the
correlation function shifts due to the velocity change. In
the one-point measurement the width of the autocorre-
lation function changes.
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Castd = fSstd − SgfSst + td − Sg. s3d

Our signal is a sum ofNs independent events:

Sstd = o
j=1

Ns

sjst;m jd, s4d

wherem j =hAj ,t0j ,wtj ,…j denotes the set of random param-
eters describing thej th event with amplitudeAj, time center
t0j, lifetime wtj, etc.

The variance of the autocorrelation function is given by

s2 = kCa
2l − kCal2. s5d

Using definitions3d we have

s2 = kSstdSst + td2l − kSstdSst + tdl2 + kS̄4l − kS̄2l2

= s1
2 + s2

2. s6d

We will use the following abbreviations:

s1
2 = kC0

2l − kC0l2,

s7d
s2

2 = kS̄4l − kS̄2l2,

where C0 denotes the covariance function without average
subtraction. Now we calculate these terms separately,

kC0l =K 1

DT
E o

j=1

Ns

sjst;m jdo
k=1

Ns

skst + t;mkddtL
m

=
1

DT
o
j=1

Ns KE sjst;m jdsjst + t;m jddtL
m j

+
1

DT
o
lÞm
KE slst;mldsmst + t;mmddtL

ml,mm

=
Ns

DT
kc̃jst;m jdlm j

+
NssNs − 1d

DT
kc̃lmst;ml,mmdlml,mm

,

s8d

where

c̃jst;m jd =E sjst;m jdsjst + t;m jddt s9d

is the autocovariance of one event and

c̃lmst;ml,mmd =E slst;m jdsmst + t;m jddt s10d

is the pair covariance function of two different events. Here
c̃j and c̃lm are the usual covariance functions multiplied with
DT and c̃lm determines the variance of the autocorrelation
function. We suppose that different events are statistically
independent and the set ofPm j probability distributions is
identical for all Ns events, i.e., we suppose that events are
statistically identical. In this case it can be shown that

kc̃lmst;ml,mmdlml,mm
= DTks̄jlm j

2 . s11d

Here s̄j is the time average of eventj .
After some calculations, we arrive at the following ex-

pression fors1 ands2:

s1
2 =

Ns

sDTd2fkc̃j
2lm j

− kc̃jlm j

2 g

+
NssNs − 1d

sDTd2 fkc̃lm
2 lml,mm

− kc̃lmlml,mm

2 g ,

s12d
s2

2 = fNsks̄j
4lm j

+ 2NssNs − 1dks̄j
2l

m j

2
− NssNs − 1dks̄jlm j

4

− Ns
2ks̄j

2l
m j

2 g .

In order to obtains / kCal, the relative scatter of the au-
tocorrelation function, we need the expectation value of
Castd,

kCastdl = kSstdSst + tdl − kS̄2l

=
Ns

DT
kc̃jst;m jdlm j

+
NssNs − 1d

DT
kc̃lmst;ml,mmdlml,mm

−
Ns

2

sDTd2ks̃jlm j

2 ,

s13d

wheres̃j =esjst ;m jddt.
In the limit of Ns@1 and taking into account Eq.s11d the

last two terms cancel in the above expression.
Using Eqs. s12d and s13d one can directly calculate

s / kCal. However, in the general treatment it is rather com-
plicated therefore we focus here on deriving the tendency in
DT and NS, and show the detailed result only for identical
Gaussian pulses in the following section.

First let us assess the correlation integralss9d and s10d.
For t.w swherew is the mean lifetime of the eventsd these
vanish. Additionally thec̃lm pair covariance function will
also vanish ifut0l − t0mu.w holds for thet0 time centers of
events l and m. Otherwise it can be approximated as
DsPmdA2w, whereA is the mean amplitude of the events and
the constantD carries the information on the probability dis-
tributions. As we assume that thet0 time centers of the events
are uniformly distributed over theDT time interval, the sta-
tistical averaging brings in aw/DT multiplier. Averaging
over all otherm parameters of the events will produce a
constant factor which depends neither onNs nor on DT.
Based on the above att=0 we have

kc̃jl ~ A2w, kc̃j
2l ~ A4w2, kc̃lm

2 l ~ A4w2 w

DT
,

kc̃lml ~ A2w
w

DT
, ks̄jl ~ A

w

DT
, ks̄j

2l ~ A2 w2

sDTd2 , s14d

ks̄j
4l ~ A4 w4

sDTd4 .

Assuming thatNs@1, hence keeping the highest order terms
in Ns,s

2/ kCa
2st=0dl can be expressed using Eqs.s5d and

s12d–s14d as
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s2

kCa
2l

< D1S w

DT
D + D2S w

DT
D2

. s15d

The constantsD1 andD2 are determined by details of thePm

probability distributions. Ifw/DT!1 we can keep only the
leading term inw/DT, thus our final result is

s

kCal
~Î w

DT
. s16d

Our result may be surprising as the relative scatter does
not depend on thens=Ns/DT event rate. One would expect
that for higher event rates the statistics should improve.
However, in our case the scatter of the correlation function is
produced by random overlapping of events; this is propor-
tional to nS. The mean of the correlation function is also
proportional tonS, therefore the relative scatter will not de-
pend on the event rate. On the other hand, whenDT is in-
creased at a fixed event rate theNS number of events in-
creases as well without changing the random coincidence
between the events, and as a result the relative scatter de-
creases. In this sense the number of measured events does
improve statistics.

B. Gaussian pulses

In this section we apply this general result to a simple
model of Gaussian shaped events with the same amplitude
and lifetime, randomly uniformly distributed inDT, hence
the single random variable is the time centert0j for each
pulse:

sjst;m jd = e−st − t0jd
2/2wt

2
, m j = ht0jj.

Substituting the Gaussian shape of thesjstd events into Eqs.
s9d and s10d we get

s̃jsm jd =E sjsm jddt = Î2pwt, s17d

c̃jst;m jd =E
−`

+`

sjst;m jdsjst + t;m jddt = Îpwte
−t2/4wt

2
,

s18d

c̃lmst;ml,mmd =E
−`

+`

slst;mldsmst + t;mmddt

= Îpwte
−st0l − t0m + td2/4wt

2
. s19d

From this it is clear that

kc̃j
2lm j

− kc̃jlm j

2 = 0,

kc̃lmlml,mm
= Îpwt

1

sDTd2 E E e−st0l − t0m + td2/4wt
2
dt0ldt0m

=
2pwt

2

DT
,

kc̃lm
2 lml,mm

= pwt
2 1

sDTd2 E E e−st0l − t0m + td2/2wt
2
dt0ldt0m

=
Î2p3/2wt

3

DT
. s20d

In our cases2
2 identically equals zero ands is independent of

t, thus we arrive at

s2 = NssNs − 1dFÎ2p3/2S wt

DT
D3

− 4p2S wt

DT
D4G . s21d

To obtain the relative scatter we also needkCal from Eq.
s13d:

kCal = Ns
ÎpS wt

DT
De−t2/4wt

2
+ NssNs − 1d2pS wt

DT
D2

+ Ns
22pS wt

DT
D2

. s22d

Finally collecting all terms the relative variance of the cor-
relation function att time lag has the form

s

kCal
=

ÎsNs
2 − NsdFÎ2p3/2S wt

DT
D3

− 4p2S wt

DT
D4G

NsFÎpS wt

DT
De−t2/4wt

2
− 2pS wt

DT
D2G . s23d

Now we can do two steps of approximation: first, as we
have already mentioned above,wt /DT!1, therefore in the
numerator we can neglect the fourth order term and in the
denominator the second order terms. The second approxima-
tion has also been mentioned before:NssNs−1d<Ns

2. This
way we get a very simple expression for the relative variance
at t=0:

s

kCal
<

NsÎÎ2p3/2S wt

DT
D3

Ns
ÎpS wt

DT
D =Îs2pd1/2 wt

DT
. s24d

In order to make sure that the analytical calculation and
our considerations are correct a simple numerical simulation
was performed. Test signals were created by adding Gaussian
pulses with random center time and the numerically calcu-
lated scatter and relative scatter of the autocorrelation func-
tion at t=0 calculated from an ensemble of 20 correlation
values are plotted in Fig. 3.

Additionally to the simple statistical simulation de-
scribed above a more complete computational analysis was
done to illustrate the feasibility of the velocity measurement
method. Results are shown in Fig. 4. Identical Gaussian
pulses were moved across a single detection channel with a
variable flow velocity. The lifetimetlife of these events was
much longer than their transit timetv over the observation
volume and the pulses were always generated before reach-
ing the observation. The flow velocity was modulated sinu-
soidally with different frequencies and amplitudes. In some
cases an additional Gaussian noise was added to the signal
simulated with 1ms time resolution. The autocorrelation
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functionCastd was calculated for short time intervals as plot-
ted in Fig. 4sbd. Thet1/2 time lag where the correlation drops
to its half was calculated for all of these short time intervals
and plotted in Fig. 4scd. The effect of the 100 Hz velocity
modulation applied in this simulation is clearly observable in
both of these figures. The power spectrum of thet1/2std sig-
nal is shown in Fig. 4sdd for different velocity modulation
amplitudes from 0.2 to 0.4. The peak at 100 Hz clearly
shows up in all cases. In one of the plotted cases an addi-
tional normally distributed random noise was added with a
rms amplitude identical to the rms amplitude of the original
signal. The resulting power spectrum exhibits a broadband
noise and somewhat reduced sensitivity to the 100 Hz modu-
lation, but the peak is clearly distinguishable. This remark-
able insensitivity to noise is caused by theÎwt /DT tendency
in Eq. s24d. Thewt autocorrelation time of the random noise
is about 1ms while for the Gaussian pulses it is about 7ms
fsee Fig. 4scdg, thusCa will be less sensitive to the broadband
noise than to event statistical noise.

As a final test the modulation frequency of the flow ve-
locity was raised to 1 kHz and theDT time resolution re-
duced to 100ms. Although this increases the event statistical
noise of the autocorrelation function by nearly a factor of 3,
the peak at 1 kHz in the power spectrum in Fig. 4sed is still
apparent.

Finally it should be mentioned that it is a remarkable
feature of Eq.s24d that for the calculation of the statistical
error of the autocorrelation function only thewt event corre-
lation time is needed, which can easily be read from the
autocorrelation function itself.

IV. IMPLICATION TO PHOTON STATISTICS

In several fusion plasma diagnostic techniquesse.g.,
BES and ECEd the measured signal contains a significant
noisese.g., detector noise, photon statistical noised. This also
causes scatter in the autocorrelation function, albeit with dif-
ferent temporal features. In case of the “event statistical
noise,” calculated in the preceding section, disturbances con-
sist ofwt wide pulses. In contrast to this the photon statistical
noise will cause pulses whose width is determined by the
inverse of the amplifier bandwidth. In this section we shall
calculate the relative scatter of the autocorrelation function
resulting from detector noise. Amplifier noise and photon

statistical noise will be treated the same way: a Gaussian
white noise can be considered as photon statistical noise in
the limit of high photon flux.

Let us assume that the measured signal consists of over-
lapping photon pulses. The fluctuation of the signal from the
plasma modulates the rate of the photons; this way it modu-
lates their statistics as well. In most fusion plasma fluctuation
diagnostics we are looking for a small amplitude fluctuation
stypically 1%–10%d on top of a slowly varying signal. Ten
percent modulation will not change the statistics of the pho-
ton noise considerably, therefore we assume that it is con-
stant in time. This enables us to write the detected fluctuation
signal as a sum of two signals: the fluctuating plasma signal

sor event signalS̃Ed and an additional photon statistical noise

signal S̃ph,

S̃std = S̃Estd + S̃phstd. s25d

The two signals are now uncorrelated. Assuming that at least
one of the above signals have a zero mean the autocorrela-
tion function can be written as

Castd = kfSEstd + SphstdgfSEst + td + Sphst + tdgl

= kSEstdSEst + tdl + kSphstdSphst + tdl + kSphstdSEst

+ tdl + kSEstdSphst + tdl = Ca
E + Ca

ph. s26d

This result shows the additivity of the autocorrelation func-
tion. To calculate the squared variance ofCa, we can simply
sum the squared variances of the two terms. We have to note
that the relative variance of the photon noise can be calcu-
lated exactly the same way as in the case of event statistics
because the photon noise can be described as a sum of events
sphotonsd with a lifetime determined by the time constant of
the amplifier.

Now we wish to calculate the ratio of the variance of the
correlation function arising from event statistics and photon
noise. Rewriting Eq.s24d we get

sCa
=Îs2pd1/2 wt

DT
kCast = 0dl =Îs2pd1/2 wt

DT
Arms

2 ,

s27d

where kCast=0dl was identified as the square of the rms
amplitudeArms of the fluctuating signal. For Gaussian pulses

FIG. 3. Comparison between explicit
calculation of the relative scatter and a
simple numerical model. Constant
event ratesleftd. ConstantDT srightd.
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Arms can also be expressed using Eq.s22d from the pulse rate
n, the pulse amplitudeA, and the pulse widthw as Arms

2

=ÎpwnA2. Using these expressions we express the variance
due to the event statistics using the rms fluctuation level
AE,rms and the variance due to the photon statistics using the
photon pulse amplitudeAph:

sCa

E =Îs2pd1/2 wt

DT
AE,rms

2 , s28d

FIG. 4. Results of the full 1+1 dimen-
sional simulation. Modulation fre-
quency of the poloidal flow velocity is
100 Hz for sad–sdd and 1 kHz forsed.
The relative amplitude of the velocity
modulationsdvp/vdcd is 0.3 except for
the cases noted insdd. sad Simulated
signal composed of identical Gaussian
pulses.sbd Autocorrelation function vs
time. scd Half width of the autocorre-
lation function st1/2d as a function of
time. sdd Power spectrum of thet1/2std
signal for various relative velocity
modulation amplitudes and additional
random noise fordvp/vdc=0.3. sed
Power spectrum of thet1/2std signal in
the case of 1 kHz frequency
modulation.
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sCa

ph =Îs2pd1/2wph

DT
ÎpwphnphAph

2 . s29d

Herenph is the photon rate,wph is the temporal width of the
photon pulsesstime constant of the amplifier/detectord, and
Aph is the amplitude of the photon pulses. We can also link
these parameters to the dc level of the light signalsAdcd as

Adc = ÎpAphwphnph. s30d

Using Eq.s30d the ratio of the variance due to photon statis-
tics to the variance due to event statistics is given by

sCa

ph

sCa

E =Îwph

wt
S Adc

AE,rms
D2 1

Îpwphnph

. s31d

We can recognize that the parameters determining the ratio
of the two variances are the relative fluctuation amplitude
1/R;sAdc/AE,rmsd, the number of photons detected during
the time constant of the amplifierwphnph, and the ratio of the
amplifier time constant to the event autocorrelation time.
These parameters can all be determined from the signal.

V. ESTIMATION OF PARAMETERS FROM THE
EXPERIMENT

As we can see from Eq.s31d, in order to obtain this ratio
we must determine four quantities:wph sintegration time of
the amplifierd, wt scorrelation timed, R srelative fluctuation
amplituded, andnph sphoton rated. Each of these can be di-
rectly obtained from the experimental signal.

The easiest way to determinewph is to analyze a signal
measured from a nonfluctuating test radiation sourcese.g.,
light signal for BES, blackbody source for ECEd. The width
of the peak aroundt=0 of the autocorrelation function re-
vealswph. The rms fluctuation amplitude in a real experimen-
tal signalsAE,rmsd can be calculated from the square root of
the autocorrelation function att=0 after correction for the
photon noise. If the detector/amplifier cutoff frequency is

considerably higher than the frequency of plasma fluctua-
tions, a simple procedure can be used to separate the plasma
fluctuation from photon noise in the autocorrelation
function.17 As the effect of photon noise in the autocorrela-
tion function is limited to about 0øt,3wph this method
linearly extrapolates the autocorrelation function in this
range from 3wph,t,6wph as shown in Fig. 5. An alterna-
tive method would be the separation of the two signal com-
ponents in the frequency domain.

The extrapolated correlation value att=0 approximates
AE,rms

2 . Adc can be calculated as the mean of the signal. The
autocorrelation timewt can be read from the photon peak
corrected autocorrelation function.

A. Determination of the photon rate

In this section we present a method to determine the
photon rate from measurement. The idea is based on the plot
of Fig. 6 which shows the relative rms fluctuation amplitude

FIG. 5. Extrapolation of the autocorre-
lation function to separate the photon
peak from the correlation function
originating from the plasma
fluctuations.

FIG. 6. Determination of the photon rate from a simulated signalssee ex-
planation in the textd. The photon rate is 107 s−1.
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as a function of signal smooth length. If the signal is com-
posed of independent random pulses the relative rms fluctua-
tion amplitude changes withsnDtd−1/2 if Dt is considerably
longer than the pulse length. The dashed lines represent this
dependency in the case of different pulse rates. If at the
shortest time scales the photon noise dominates the fluctua-
tion amplitude then the location of the curve relative to
dashed lines shows the photon rate. In case the photon am-
plitude does not dominate one needs to do a measurement
with a test radiation source where the dc level of the signal is
close to the dc level of the real measurement.

It is worth noting that the plot shown in Fig. 6 is also
useful to find characteristic time scales in the signal. Our
example shows the presence of about 30ms wide random
pulses in the signal additionally to the photon noise. Unfor-
tunately thens event rate cannot be determined from the plot
because of a nonfluctuating part of the plasma signal.

VI. SOME CONSIDERATIONS FOR W7-AS Li-BEAM
MEASUREMENTS

Using this model we are able to quantify statistical prop-
erties of fluctuations measured by Li-beam emission spec-
troscopy at the Wendelstein 7-AS stellarator12,17and to com-
pare fluctuation originating from the scrape-off layersSOLd
and the edge plasma of the machine. Figure 7 shows experi-
mentally measured quantities. We have selected three char-
acteristic locations:sid SOL located outside the LCFSslast
closed flux surfaced; sii d edge that is 1–2 cm inside the
LCFS;siii d core that is 5–6 cm inside the LCFS. The data are
collected in Table I.

As the table shows in the SOL and edge regions the
event statistics dominate the scatter of the correlation func-
tion. A few centimeters deeper in the plasma the situation

dramatically changes due to the drop in the relative fluctua-
tion amplitudessee Fig. 7d. Equations31d contains the rela-
tive fluctuation amplitude squared, therefore this term domi-
nates the expression.

Before attempting an analysis of the flow velocity modu-
lations it is necessary to determine the relation betweentv
and tlife. This can be done by two-dimensionalspoloidal-
radiald BES.15,16 This can resolve both thewf poloidal size
and the flow velocity of the structures, but its time resolution
is rather limited. From this measurement we see15 that in the
SOL tlife determines the autocorrelation time, while in the
edge plasma the effect of the poloidal flow is clearly visible.
Although tv and tlife appear to be close to each other this
only affects the sensitivity of the methodssee Fig. 1d and we
can attempt to detect modulations in the flow velocity in the
edge plasma.

As we would like to detect modulations in the poloidal
flow velocity by means of autocorrelation function, it is use-
ful to estimate the uncertainty of the time lag at the half of
the maximum correlation which is basically proportional to
the uncertainty of the flow velocity determination. This is
simple to do using our previous results:

Ae−t+
2/4wt

2
=

A

2
− s,

t+ = ± 2wtÎlnS 1

1/2 −s/A
D , s32d

Dt+ ª t+ − t1/2
exact= 2wtFÎlnS 1

1/2 −srel
D − Îln 2G .

FIG. 7. Experimental determination of the relative rms amplitudesleftd and the autocorrelation timesrightd.

TABLE I. Parameters in the SOL, in the plasma edge, and in the outer part of the core plasma.

Location wtsmsd wphsmsd Adc/AE,rms nphss−1d sCa

ph /sCa

E

SOL 50 2 5 107 0.14

Edge 20 2 20 108 0.35

Core 10 2 50 108 3.15
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Here srel is the relative scatter of the autocorrelation
function coming from the statistical noisefsee Eq.s24dg and
t1/2

exact is the time lag at half of the maximum value of the
exact autocorrelation function. The ratio of theDt+ssreld
function towt is plotted in Fig. 8sad. In case of event statis-
tical noise this expression slightly overestimates the scatter,
as the modulation of the maximum of the correlation func-
tion is somewhat correlated with modulation att1/2.

What we can learn from all these calculations? Let us
have an example: assume that we would like to know the
modulation in the poloidal flow velocity with an accuracy of
Dt+/wt=25% if the correlation time is about 10ms. sW7-AS
edge conditions.d The question is what has to be the mini-
mum DT integration time in order to reach this accuracy.
From Fig. 8sad it is clear that this uncertainty corresponds to
10% relative scatter of the autocorrelation function. From
Eq. s24d we can calculateDT, which is the minimum sam-
pling time for the flow velocity determination. Consequently
the maximum detectable velocity modulation frequency is
fmax=1/s2DTd. Of course this limiting frequency depends on
the needed accuracy inDt+/wt. For longer total measure-
ment times higher scatter can be allowed, but in any case the
method breaks down aroundsrel=0.5. Achievablefmax val-
ues are plotted in Fig. 8sbd as a function of thewt autocor-
relation time for variousDt+/wt accuracies. The figure
shows that for the Wendelstein 7-AS edge conditions a

couple of 100 Hz frequency modulations in the poloidal flow
velocity could be detected.

The above considerations indicate that in order to in-
crease the maximum detectable velocity modulation fre-
quencywt should be decreased. Aswt=wf /vf the ability to
detect smaller poloidal structuressbetter poloidal localization
of the measurementd largely increases the detection fre-
quency band. This can be achieved by, e.g., Langmuir
probes10 or by BES withBi observation.7

The above analysis shows that it is possible to detect
modulation in the poloidal flow velocity in the edge plasma
of the Wendelstein 7-AS stellarator and other fusion devices
by means of Li-BES. The statistical method might be easily
applicable to probe measurements in the SOL or edge of
other devices as well. Such investigations are underway and
will be published in the near future.

VII. CONCLUSION

In this paper we have presented a method for the deter-
mination of fluctuations in the flow velocity of fusion plas-
mas. This method is based on the calculation of the autocor-
relation function from short time intervalssDTd and
characterization of flow velocity by means of half width of
the autocorrelation function. If we would like to involve
short time intervals in our calculations of the correlation

FIG. 8. sad Uncertainty in determination of the time lag at half maximumst+d of the autocorrelation function with respect to relative scatter of the
autocorrelation functionfsee Eq.s32dg andsbd maximum detectable flow velocity modulation frequency as a function of the mean autocorrelation timewt at
different relative uncertainties oft+.
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function, the knowledge and behavior of statistical errors
coming from the finite number of events is crucial. Starting
with a simple model of the signal we derived an analytical
formula for the relative scatter of the autocorrelation func-
tion. Using this expression to our Wendelstein 7-AS fluctua-
tion measurements by Li-beam emission spectroscopy we
found that in the SOL and in the edge plasma the main con-
tribution to the error bars comes from the event statistical
noise, but in the core plasma the noise of measurementspho-
ton noised dominates. In addition we also gave a method to
determine the photon rate. Finally we are able to relate the
relative scatter of the autocorrelation function and the rela-
tive uncertainty of the determination of half width of auto-
correlation function which is directly connected with the
flow velocity in our approximation. As a final result we de-
termined the maximum measurable flow modulation fre-
quency as a function of the autocorrelation time.
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