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Abstract

This report presents the first application of the autocati@h technique[l] to detect and characterize
the microturbulence-zonal flow system using fluctuatingnaig @3,«, I,) measured by special arrays of
Langmuir probes in the Castor tokamak. Radially localizedi¢m) random flow structures has been
clearly observed with a lifetime a¢ 1ms and long-range (measurements have been extended Rpto

poloidal distance) poloidal correlation (m=0). Linkagetvaeen flow variation and the local density
profile has also been demonstrated.
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Chapter 1

What zonal flows are?

Nowadays it is generally accepted by the fusion commungy the understanding of the drift wave -
zonal flow turbulence plays a crucial role in the understagdind handling of anomalous transport and
different spontaneous transitions of the collective plastate.

From theoretical point of view drift wave (DW) turbulencensists of unstable potential modes
(k,w), with k) < k£, > 1/L, , andw < €, where(||, L) denote directions with respect to the
confining magnetic field[, is the perpendicular macroscopic size of the system(and= eB/m; is
the ion cyclotron frequency. The free energy sources of DStainility are the gradients of macroscopic
profiles (density, temperature etc.). The ’equilibriumésfyum of the fully developed DW turbulence
can be unstable in the presence of random shear flows or zonel Which are potential modes with
(kr, ko, ks) = (K, 0,0). The effect of shearing can be described as a diffusion obtVeradial wave
number ink-space. In order to conserve drift wave action density, tleeiase of DW radial wave
number causes a decrease in DW energy and as the energy ohiddlaw-drift wave system must be
conserved a zonal flow growth will arise. It has to be notedttimexcitation of ZF modes - mediated by
the radial gradient of the DW turbulent Reynolds stress emetely a nonlinear, nevertheless generic
process in 2D turbulence named ’inverse cascade’. For camepsive reviews in the topic of DW-ZF
turbulence we refer the Reader to [2], [3].

The appearance of ZFs and its effect on regulating turbtri@nsport was first observed in numerical
simulations at fluid, gyro-fluid and gyro-kinetic levels [#8], [6], [7].

First experimental investigations, which were devotechtodetection of sheard zonal flows and to
clarify their connection to turbulence level and transpfiiowed the theory with a delay of almost a
decade. It was shown kifidalgo et. al. [8] that the electrostatic component of the Reynolds stress
(R,) has a significant gradietitt 2, /dr ~ 107 — 10®m/s?) close to the velocity shear layer location.
Following this line at the HT-6M tokamak.H. Xuand his co-workers [9] measuring the time evolution
of the turbulence-induced Reynolds stress gradient athheds — H transition found strong correlation
between the enhancétl R, and the poloidal flow acceleration. Recently the main terntereng in
the momentum balance have been measured in an RFP configuiafil. The complete Reynolds
stress was found to be the main term opposing the action ofisicesity and then driving the shear of
E x B velocity. The problem of flow generation can be reformulaasd three-wave mode-coupling
problem [?], transforming the search for Reynolds stress profile chamgto the study of the bispectrum
of the potential fluctuations. Such nonlinear signal preceswas done byoyer et. al. [12] using
turbulence data acquired in neutral beam heated dischaiigfespontaneoug — H transitions in the
DIlI-D tokamak. The results shown transient increase ied¢hwave coupling between low and high
frequencies just before and during the- H transition.

First indirect experimental identification of zonal flowsngsphase-contrast imaging of density fluc-
tuations in the DIII-D tokamak, was done Boda and Porkolalp13]. The BES measurements and the
Time-Delay-Estimation analysis dakubowski et. al.[14] has been pointed to the existence of low



frequency(~ 15k H z) nearly coherent oscillations in the poloidal flow. Such fldvase been observed
earlier in 3D Braginskii simulations [15] as a coherent lotanf (m = 0,n = 0) zonal flows named
geodesic acoustic modes (GAM). The existance of GAM modesalg reported b¢. D. Conway et.
al. [16] at ASDEX by means of Doppler reflectometry. Last but meatst we have to mention two recent
experimental works on hunting random zonal flows. The firgt loas been performed at the HT-7 toka-
mak byG. S. Xu[?] and his co-workers using specially designed Langmuir gsolaetecting floating
potential fluctuations. Measurirnig, with a poloidal separation of about 3 cm, they have found arsep
tion in the coherency spectrum identifying the long life aemib turbulence peaking arouadK H z, and
a low frequency 10K H z radially localized mode. The second direct ZF identificaiioa stellarator
(CHS) was very recentely done in [18] using toroidally sepedl& 1.5m) dual heavy ion beam probes.
Our present measurements aim at the identfication and e tzhlaracterization of ZFs in tokamak
plasmas. Autocorrelation technique has been used to extifacmation about the fluctuations in the
flow velocity following the time evolution of the autocoragion structure of the basic micro-turbulence.
As it will be detailed below, properly defined quantity, naiveutocorrelaton-widthit/,.;(t)) carries
the informaton on the time modulation &. x B flow. The characteristic time scale of the random
flow modulation has been deduced from the autocorrelatination (ACF) ofiV,.,(¢) while the radial
and poloidal structure of thi&,.(¢) fluctuation have been extracted from the cross-correldtinction
(CCF) along a single rake and the CCF between the two rakpsatgely.



Chapter 2

Experimental set-up

Fluctuation measurements have been done in the edge pld<dienac-heated discharges in the CAS-
TOR tokamak (R = 0.4m,a = 85cm, B, < 1.5T, I, < 25KA, Tspee < 50ms,n, = (0.2 — 0.3) -
10 m=3, T,(0) ~ 200 eV), using tworake probesas shown in Figure 2.1.

Vertical rake probe

Horizontal
rake probe

Figure 2.1: The experimental set-up

Each rake probe consists of an array of Langmuir-probe ppsexd by2.5mm. Every odd tip has
been operated ifloating potentialregime , while each even probe has been operatashisaturation
currentregime. If we assume as usual that the temperature fluchsasice negligible, using the tip-
arrangement decribed above, we are able to measure at tieeradial position the radial electric field
fluctuations and the density fluctuations. (Toroidal angleveen the plane of experiment and plane of
limiter was135°, and radius of limiter diafragma was 85 mm.)

Figure 2.2: Picture of the radial rake probe



Chapter 3

Signal processing

In the course of our experimental campagne standard shagdlean made with main parameters shown
in Table 3.1 where it is also idicated the radial positionha vertical and horizontal rake probe with
respect to the tokamak center. For data analysis we havetesgtla time interval ot5ms length in the
stationary phase of the discharges (global plasma paresratseen in Fig. 3.1).

Shots ry [mm]  rg [mm] I, [kA] Bp[T] Comments
20511-20531 70 7 8 1.3 -

Table 3.1: Characterization of the investigated shoteseri

#20515

Density [x 10exp18 m—-3]
Plosma_current [kA]

. . . . . . . . - . . . .
0 5 10 15 20 25 [ 5 10 15 20 25 ] 5 10 15 20 25
Time [ms] Time [ms] Time [ms]

ontal pos. [V]
V]

Ho [V]

Vertical pos.[V

. . . .
Q 5 10 15 20 25
Time [ms]

Figure 3.1: Main plasma parameters in # 20515.

In order to improve statistics, we have used an ensembles@3 which are though to be ’identical’
in a given statistical sens. That means that we have cagcltae first four moments of the fluctuating
signal for each shot belonging to the ensemble. Table 3®@sHhwe average value and its uncertenty of
the moments for shots in Table 3.1.



| Standard deviatioh  Kurtosis |  Skewness |
| 0.0102+0.0017 |[3.363+0.176 | —0.0059 & 0.001 |

Table 3.2: Statistical identity of shots in Table 3.1.

3.1 Autocorrelation technique

In this section we investigate the possibility of detectBgperpendicular flow modulations through
observing temporal variations of the autocorrelation fiomc(ACF) in a single-point measurement of
plasma turbulence. In order to calculate the sensitivithefmethod we found it essential to analyse the
statistical scatter of the autocorrelation function duemo effects: the finite number of turbulent eddies
and/or detector statistical noise. The final result of tl@swation is a simple expression readily usable
to various measurements. Details of the derivation can tvedan [1]
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Figure 3.2: Sketch of one-point (left) and two-point (righteasurement

Investigating correlation functions we can get informatabout statistical properties of turbulent
structures: the correlation time, the correlation lendtng@ a spatial coordinate and the propagation
velocity from cross-correlation function. From a very siemmodel, which deals with poloidally moving
structures having Gaussian shape both in space and timgmeaftculate the autocorrelations time in a
single-point measurement as a function of the eddy lifetipeand the velocity dependent propagation
timer,:

w, = _ Tife " Tv (3.1)

2
\Tiife T 70

wherer, = w,/v,, w, IS the poloidal correlation length ang is the poloidal flow velocity. From
this formula it is clear that we have two distinct limitingsess:

e 75 > 7,:for a fixedw, spatial correlation length the correlation timag depends mainly ony;
wy &~ wy/ve. In this case from the correlation time we can follow the tiewelution of theu,(t)
flow velocity.

e 77 < T,:iN this case the correlation time gives information abbetéddy lifetime and the flow
velocity cannot be deduced.

The heart of the autocorrelation method lies in the validitythe first assumption. In this case
the procedure is the following: first we split the whole tineeord in shorter\T" intervals, where the
AT > w, relation must hold. Than we calculate autocorrelationfiens from these short time intervals
and extract the information about the width of the autodati@n function. In this way we obtain the
ACF-width (denoted by¥V,.(t)) as a function of time with time resolution determined A¥". After
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Figure 3.3: lllustration of method (more details see in the)t

this procedure we are ready to analyBg.((¢) using correlation technique or spectral methods. It has to
be noted thatV,.;(¢) can be defined in different ways. In this work, as will be disat later,)V,.; has
been taken to be the first moment of the autocorrelation fomct

To illustrate the feasibility of the method 1+1 dimensiosiahulation was done. ldentical Gaussian
pulses were moved across a single detection channel withablaflow velocity. The lifetime4;.)
of these events was much longer than their transit time ¢xeobservation volume-() and the pulses
were always generated before reaching the observationfl@lerelocity was modulated sinusoidally.

In some cases an additional Gaussian noise was added taytte simulated with time resolution of
1us.

The autocorrelation function was calculated for short tintervals. The effect of the 100Hz velocity
modulation applied in this simulation is clearly obsereabl Fig. 3.3. The power spectrum of the
autocorrelation-width signal is shown in Fig. 3.3. (bot)dor different velocity modulation amplitudes
from 0.2 t0 0.4. The peak at 100Hz clearly shows up in all casesne of the plotted cases an additional
normally distributed random noise was added with an RMS #uotd identical to the RMS amplitude
of the original signal. The resulting power spectrum exisibibroadband noise and somewhat reduced
sensitivity to the 100 Hz modulation, but the peak is cledistinguishable.

3.1.1 Statistics of the autocorrelation function

In order to evaluate the sensitivity of the method above retyéical expression was derived [1] for the
relative scatter of the autocorrelation function. In oucuakation we assume that we have a measured
time signal which consist of randomly distributed, limitednporal length events, including overlapping
as well. Each event has a time evolution and it is describeld®t of random variables (with a given but
otherwise arbitrary distribution function) such as the atuge, the lifetime, the time center etc. Starting
from the standard definitions of the autocorrelation functand statistical variance and introducing
different kind of statistical averaging, it is possible tride a formal expression for the relative scatter
of the autocorrelation function. Using some reasonableraptons such as the large number of events



(Ns > 1) and long integration time relative to the average cori@tatime (w;/AT < 1), we can

deduce the following tendency:
o Wt
=D-/— 2
oy~ P Var (3:2)

whereo is the standard deviation of the autocorrelation functidy) denotes the average autocorrelation
function at zero time lag, anf) is a constant depending on the details of the distributidriferent
random variables describing turbulent events. In case @ftswvith uniform Gaussian shape the value
of D can be easily calculated and has been found tb e (27)'/4.

10° ¢

e # 20515, channel: 2.
—theoretical courve

relative scatter

10 7}

10° 10°
AT [us]

Figure 3.4: Gaussian theory vs. experimental data fromuaicin measurements

The results of this simple model are compared with real fatobm measurements (see. Fig. 3.4.)
done at the Castor tokamak by means of Langmuir probes apgration saturation current regime.

3.1.2 Sensitivity of the method

In this section the response of the properely defined ACRhafichction to the small modulations in the
autocorrelation timev; has been investigated. We define the measure of the autlat@mevidth as:

W (wy(t)) = /0 7 Cy (i wy(t)) dr. (3.3)
In the following we assume that the shape of the autocoivel&nction isexp (- 3% ) - This assump-

t
tion in our case is supported by measurements(see Fig.I8.d)r limiting case the autocorrelation time
wy(t) = wy/vy(t) depends on the poloidal flow velocity. Now we spiif(¢) in two parts:

wy(t) = wy + dwy(t). (3.4)

As we would like to determine modulations in the ACF-width((¢)) originating from flow variation,
using Eq. (3.3), a natural question is arised: what is thaticel between correlation time variation
(or poloidal velocity variation) and variatons 1 (¢)? In order to answer this question we expand
aroundw?, assuming = ‘Z}% < 1.

oC,

Ca = Ca|e:0 + 66

e+ 0O (62) (3.5)

e=0
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oC, ] { 72 } ( 72 ) 0 1+ 6
= X - AN = R €
Je P 209 (1 + €)? 2w9?)  Oe

2 2
e=0 T T
=0 expl— =, 3.6
p{ 2w22} (w?) (3.9

collecting all terms we arrive to
(S'U}t >
— 1 |- 3.7
(w)] &0

Let us return to the original definition in Eq. (3.3) and usthg known formula/;* e dy =
n+l
o ), wherea > 0,n > —1 andI'(z) is the gamma function, the generalization of factorials.

2
n+1

2a" 2

2 4]
0, = 03+03-<%>-(i;>+0
Wy w

t

2
Wacf:/O T-cg(r)d7+5—“gf/0 (%) 700 (1) dr = Wy + W (3.8)

Wy Wy

Evaluating integral$V, andWW; using properties of gamma functidiil) = I'(2) = 1, we obtain:

Wacf — WO 5wt
—_— = . 3.9

We can conclude that defining ACF-width as it has been dongin&3), in the framework of our
model modulations in the flow can be amplified by a factor of.t@bcourse in a real experimental data
processing, the integration limit canot be extended toityfibut to finiter,. In this case the sensitivity

of the method decreases as it can be seen in Fig. 3.5.

Sensitivity for Gaussian ACFs
T T T T

- —10 %(5ps)

AWacf/AW

Figure 3.5: Dependence of the amplification factor on irdggn limit 7, at two different correlation
times. Note, that henceforth in this papper we will use twoets larger value for the autocorrelation
time due to the symmetry of ACF, so our case is indicated ig filgure by solid linesHus) at three

different velocity modulations.



Chapter 4

Results

4.1 Time-scale separation
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Figure 4.1: Power density spectrum (left) and autocoriigright) of local density fluctuations

Two distinct time scales can be observed in Fig. 4.1.0n tleeh@and the basic micro-turbulence,
characterized b$0 — 40k H = fluctuations has been ivestigated using spectrally filtergaals as seen in
the left plot of Fig. 4.2. On the other hand a pronounced pggkesent at lower frequencies wich can
be linked with plasma flow modulations as it will be shown tatethis report.

4.2 Characterization of the basic micro-turbulence

In the previous chapter it has been pointed out that the atrgation technique can be used in the cases
when the poloidal flow velocity dominates the autocorrelatime of the basic turbulent structures. In
order to check this statement previous measurements hasdbee in the Castor tokamak (during the
summer course 2003) using two poloidally separated Langpmabes. Autocorrelation function (left)
and cross-correlation function (rigth) of the density fluations are seen in Fig. 4.3. The radial electric
field has been risen applying edge biasing wich also regsultised enhacement of the poloidal rotation
(see the dashed courve in the Fig. 4.3).

The plots in the Fig. 4.3 clearly show roughly two times largfaift of the maximum of CCF (rigth
hand side plot,red line)in the no-biased case — indicativig ttmes lower velocity —, and two times
wider ACF-width (left hand side plot,red line) indicatintggtt our measurements lie in the region, where
Tiife > T, SO the ACF-width method can be applied.
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Figure 4.2: Raw signal for fast scale (left top) and for slmale (right top). The auto-correlation and
cross-correlation functions for the shorter time-scatst@m).
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Figure 4.3: Comparison of one-point and two-point methoanmeal experiment

The temporal behaviour of the high frequency fluctuationthefplasma which are associated with
the small scale plasma turbulence are shown in Fig. 4.4. Eiecoclusions ariseing from the fluctation
measurements of floating potentiélf(), ion saturation current/(,,) and radial electric field&,) are the
following: the characteristic time scale has been foundeg@bout a couple of microseconds,1cm
radial correlation length has been detected and no direatlation has been observed between the two
poloidally 12 cm separated rake probes.

4.3 Correlation analysis ofW,s(t)

From direct measurement of the ion saturation current faiins we can estimate the autocorrelation
function of the density fluctuations. The total fluctuatingnsl of about 15 ms — after an appropriate
detrending procedure — was divided inkd” = 75 — 100us long sections. These are about 7 -10 times
longer than the approximately 13 observed autocorrelation time.
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Figure 4.4: Characterization of basic turbulent strucure

The A;(7) autocorrelation function was calculated for each sectioh single number, representing
the width of the autocorrelation function in sectipwas calculated the following way:

70

[ TA;(T)dr
w; = 0707, To = 10pus (4.2)
[ Aj(r)dr
0
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Figure 4.5: Time evolution ofV,.; (left) and its relative modulation (right).

The time series of th&/,.;(¢) plotted in Fig. 4.5 shows a relative modulation of about 13 Brclv
is also the upper limit for the autocorrelation method (Wer¢o Eq. (3.9)). As it was mentioned
above an ensemble of 'identical’ shots has been made in twdeprove statistics. The average over
the ensemble of shots was done after calculating the cbaelunctions, and the effect is apparent in
the bottom plots of Fig. 4.6, where an additional smoothigdlao been done (red line).

After calculating ACF-width signalsy/,.(t), for each ion saturation channel we proceed to calculate
the detailed correlation structure of the,.;(¢) ~ flow velocity modulations. The results are seen in
Fig. 4.6. The left hand side of the figure shows the charastitetime scale of flow modulations (bottom)
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Figure 4.6: Space-time correlation structre of ZFs.

to be~ 1ms, and the radial structure of the random flows (top) wich d¢jeadicates radial localization
(Iem width) in the edge plasma. Plots in the right hand side shevctbss-correlation between a given
reference channel located at the horizontal probe and ladirathannels at the vertical probe. On the
basis of these calculations we can conclude that the flowtsities remain significantly correlated in the
poloidal direction even when measurement channels areaegaby 12 cm which may be a signature
of the high poloidal symmetry.

Before proceeding, it seems to be indispensable to chegaassibility of misinterpretation of our
results by an effect originatig from the global plasma clesngther than from relevant local features.
To this end correlations between ACF-widths signal andvesieglobal parameters/(,.,, Xnorizontal,
Xoerticar) Nave been determined. As it can be seen in Fig. 4.7 therecacemelated changes in the
global plasma parameters and modulations in the flow velocit

4.4 Connection of flow modulations toF, and 7,

Present experimental setup has allowed the measuremexdiaf electric field fluctuations and density
fluctuations at the same radial position. Than it has becamssiple on the one hand to directly check
the ACF-method correlating/,., with E,, (Fig. 4.8, left) and to explore connection between local
density changes and flow modulations at the ZF time scalesglatng IV,.; with L., ON the other
hand (Fig. 4.8,right).

From the plots above it is clear that a connecton between flmiufations and the local changes of the
density profile exists and causality relation also holdfiatstame milisecond timescale with the density

changes leading the flow changes. It is also ovious that #ieststs is rather poor as a cosequence of
short time intervals fobV,.(t).
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Chapter 5

Conclusion

Detailed fluctuation measurements have been done in thetmaied discharges of the Castor toka-
mak. Density and radial electric field fluctuations have beetected using specially designed arrays
of Langmuir probes, allowing radial-poloidal correlatioreasurements. The basic micro-turbulece has
been characterized by means of autocorrelation functitmmgydhe rake probes. It has been found that
the characteristc time scale and radial length of such tstre lie in the domain of a couple of mi-
croseconds and a couple of centimeters respectively. Ibéas also demonstrated the applicability of
the autocorrelation method in our case.

Autocorrelation-width analysis has been shown the extgtasf ~ 13% rms modulations in the
poloidal flow wich are radially well localized 1¢m) and poloidally symmetric, having a characteristic
lifetime of ~ 1 — 2ms. All these features strongly suggest the apparence of Zlmved described by
theory asn = 0,n = 0 radially localized random potential structures. Our ressate also consistent
with the recent experimental work reported in [18]. In amtdlita possible connection between ZFs and
local density profile changes (maybe connected with theutarth transport) has also been found.
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