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1 INTRODUCTION 

Localised heat loads on tokamak first wall and/or divertor components has been observed on a 

number of tokamaks during operation with Lower Hybrid Current Drive (LHCD) 
1-3

. Evidence from 

Langmuir probe 
2
 and direct infrared imaging of locations magnetically connected to the LH grill 

mouth 
3
 supports the suggestion 

1,2
 that the damage is at least partially caused by fast electrons 

generated in front of the LH antenna. Observations of stationary hot spots on the guard antenna 

limiter during LHCD with a steady LH power input, combined with floating potential measurements 

at the ergodic divertor plate, indicate a steady fast electron flow for the duration of the LH pulse 
4
. 

A theory to explain the origin of the fast electrons has been previously developed on the basis of a 

Landau 
5
 and/or Fermi 

6
 interaction of thermal edge electrons with the LH antenna electric field. 

Momentum and energy is transferred  from the antenna field to resonant edge electrons through the 

Landau interaction. Energetic electrons streaming outward from either end of the grill are thus 

generated. For typical grill electric field intensities around 3-5 kV/cm the higher harmonics of both 

the forward and backward spectra experience overlap  (in the Chirikov 
7
 sense ) in velocity space.

5
 

The globally stochastic region extends from the electron Landau damping limit  v///ve ≅ 3  up to the 

overlap limit which for the forward spectrum is about  2 keV  for an electric field of 4 kV/cm
  5

. 

Here we examine in more detail the momentum and energy transfer from the antenna field to the edge 

electrons. We derive the LH-induced electron diffusion coefficient, and then find the exact fast 

electron distribution function from the collision-less quasi-linear kinetic equation with parallel flow. 

Ensemble averages <v//> and <v//
2
> are compared with simulation results. The LH force acting on 

electrons, the dissipated LH power, the fast electron power flow in front of the antenna, and the radial 

width of the interaction region are calculated analytically. 

2 FAST ELECTRON DIFFUSION COEFFICIENT  

The quasi-linear diffusion coefficient  D(v//)  in front of the LH grill is obtained by integrating the 

equation of motion 

                                ( ) ( )[ ]rq
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along unperturbed electron trajectories  z = v// t, and then carrying out a simple resonance broadening 

correction. The diffusion in an ensemble of particles is generally defined as D(v//) = <∆v//
2
>/2 t    

where <�> signifies here ensemble averaging with respect to a random initial phase  ϕr   which  



 

 

distinguishes the individual electrons. Further, ω = 2πf  ( f = 3.7 GHz), and vq = eE0/me   is the 

electron quiver velocity. For the purpose of calculating D we consider the simple case of a grill 

fundamental mode i.e. A(z) = 1 in front of the wave-guide mouths and A(z)=0 in front of the septa. 

Further, we take  π/2 phasing between the 32 wave-guides of the Tore Supra antenna 
6
.Thus from (1) 

the change in electron velocity across any of the wave-guides is 

          ∆v// = 2 vq sin Ω ! ])12cos[( rj ϕ+Ω− ,    
4v 2

d

//

π−ω=Ω  ,     j = 1,2, �,32                             (2)             

which upon squaring, summation and ensemble averaging over the random  phases  ϕr  yields : 

<∆ v//
2
> = 2 vq

2
  sin

2
 Ω . Since the electron transit time across a wave-guide is  τc = d/v//,  the diffusion 

coefficient is   ( ) " sin  v) dv(v D 2

//

2

q// =  .   

For diffusion to occur, the antenna field intensity must satisfy the resonance overlap condition  

1v/dv4 2
//q ≥ω   (i.e. mode separatrix width  about equal to the distance between neighbouring 

modes). In the globally stochastic region, which clearly is bounded, we can average the quasi-linear D 

over the resonant peaks and set D to zero outside the stochastic region. Since D must be non-negative, 

this finally gives Dql  and a  diffusion coefficient D(v//,t) in the following form : 

                 ql//0////

2

qql Ds(t)t),D(vandD|v|/2d|v|vD =≡= ;          vELD < |v// | < vmax ,    (3)                       

where  vELD ≅ 3 ve  is the electron Landau damping limit, vmax  is the resonance overlap limit 

depending on the grill electric field intensity 
5
, and s(t) is some decreasing function of time resulting 

from a velocity variance which in a bounded velocity space region must saturate in time. Figure 1 

shows the ratio  Dsim/Dql with Dsim obtained from test electron simulations of an ensemble whose 

dynamics is described by Eq. (1). We do not yet have a theory to describe the decay in time of the 

field autocorrelation function in a bounded velocity region so that we approximate s(z) by a profile 

taken from Dsim and demand that initially s = 1.  

3 THE FAST ELECTRON DISTRIBUTION IN FRONT OF THE GRILL 

The fast electron distribution function f satisfies the quasi-linear Fokker-Planck equation          

( ) )4(0f)E(div fvdivS divS div sepm
e
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where Srf = - ∂//(DLH∂//f), DLH is the (zz) element of the diffusion tensor, and Esep is a charge separation 

field 
8
 which we here disregard. The effect of collisions can be neglected since the fast electron 

propagation time along a magnetic field line connecting the grill to a divertor target (about 1m in 

Tore-Supra) is about τconn ≅ 10
-8

s, whereas the slowest  collision time τcoll experienced by the fast 

electrons, i.e. the fast electron � thermal electron collision time, is τcoll ≅ 7x10
-5

s . We first deal with 

f⊥, assuming separability of the distribution function in velocity space, i.e. f = f//f⊥. The fast electron 

perpendicular dynamics is effected neither by collisions nor by the antenna electric field so that f⊥ 

retains a thermal Maxwellian character with T⊥ = Te  (≅ 25 eV). The parallel f// is likewise unaffected 

by collisions but is strongly modified by the RF-driven diffusion within the stochastic region. The fast 

electron distributions f//
(+,-)

  are one-sided, i.e. are defined on parallel velocity half-space. They are fed 

by point sources of thermal electrons δ(v// - v//0), situated at either end of the grill z = z0 or zL. The 

distribution functions f//
(+,-)

 can therefore be represented by Greens� functions of Eq. (4) where we use 

the quasi-linear result (3) :  D = D0 s(z)v//  with D0 = vq
2
/2dG  and s(z) a suitable decreasing function in 

the spectrum direction.  We next drop the perpendicular part of the spatial flow divergence term. 

Finally, the transformation ζ = F(z)�F(z0), where F(z) is the primitive function to s(z), will yield the 

following equation for the Green�s function G 



 

 

 

Equation (5) is defined on ζ∈<0,∞) so that it can be Laplace � transformed 
9
 in ζ, leading to a Bessel 

equation for the image Green�s function 

 

The solution of Eq.(6) which  vanishes as v// → #∞  is the modified Bessel function 

(p/D0)K0[|v//|(p/D0)
1/2

]  which on inverting 
9
 gives the half-space solution  

The fast electrons therefore have a Maxwellian distribution f with a parallel temperature T //(z) =  

2D0ζ and we take f
(+,-)

=n
(+,-)

G
(+,-)

 where n
(+,-)

 represent, respectively, the hot forward and backward 

population densities. Velocity space averages are defined in the usual manner as 

                                                       ∫∫>=< //// dvGdvAGA         (8) 

In the following we make the specific choice s(z) = z0/z which gives T// = 2D0z0 ln(z/z0). For the grill 

entry point we obtain z0=0.11m from Fig.1. This fixes our reference system which so far was 

arbitrary. We obtain the averages <|v//|> = √(2T// /π)  and  <v//
2
> = T//. The theory and simulation 

results for  <v//
2
>  are compared in Fig. 2.  

                       

4 MOMENTUM AND ENERGY BALANCE EQUATIONS 

The fast electron parallel force and power balance equations are respectively the  mv//  and  mv
2
/2  

moments of the kinetic equation (4). Using the distribution function (7) with (8) gives 
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z
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where  W = (1/2) mT//,  S//(z) = (2/3) m<u>T//,  u = |v//|,  Frf  is the RF-induced force density, and prf  is 

the dissipated RF power density.  In Eq. (9b) we have neglected terms depending on perpendicular 

temperature on account of T⊥=Te << T// .We recall that the functions s(z) decrease, and T//(z) and the 

parallel flow density S//(z)  increase, in the direction of the  resonant  electron  forced motion. The 

mirror image of   s
(+)

(z)  with respect to the grill center is s
(-)

(z) = 1-z0/z+z0/zL, where zL=z0+(grill 

length). The equalities (9) indicate how the induced kinetic terms depend on the electron diffusion 

and essentially express the effect of the resonant interaction in fluid terms. 

The total electron force and power balance equations are 
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where we have taken  n ≅ n
(+) ≅ n

(-)
. In particular, Eq. (10b) describes the channeling of the dissipated  

LH power into parallel flow. Of technical interest are the total dissipated power P  in front of the grill, 

the upstream powerflow S , and the radial width δ of the interaction region. For the old Tore Supra 

LH antenna 
6
, the surface facing the plasma is A = 0.087 m

2
, its poloidal height is yG=25 cm, nedge ≅ 

5x10
17

 m
-3

, (ωpe/ω)edge ≅ 1.6, E0 ≅ 3.5 kV/cm, and from the extent <vELD,vmax> of the stochastic region 

we estimate n
(hot)

 ≅ 0.13 n
(thermal)

 = 6.5x10
16

 m-
3
. The power flow S is obtained on integration of (10b) , 

for P the power density prf  is integrated over the radial direction using k⊥ from the LH slow wave 

dispersion relation, and finally δ is obtained from powerflow conservation : 
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Fig. 1  The ratio of fast electron diffusion 

coefficients from simulation and quasi-

linear theory for E0=3.5 kV/cm. 

Fig. 2 The fast electron average kinetic 

energy from simulation (full line) and 

theory.  
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