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An essential ingredient of particle–in–cell (PIC) codes is a numerically accurate and
stable integration scheme for the particle equations of motion. Such a scheme is the well
known time–centered leapfrog (LF) method [1] accurate to 2nd order with respect to
the timestep ∆t. However, this scheme can only be used for forces independent of velocity
unless a simple enough implicit implementation is possible. The LF scheme is therefore
inapplicable in Monte–Carlo treatments of particle collisions [2] and/or interactions with
radio–frequency fields [3]. We examine here the suitability of the 2nd order Runge–Kutta
(RK) method. We find that the basic RK scheme is numerically unstable, but that condi-
tional stability can be attained by an implementation which preserves phase space area.
Examples are presented to illustrate the performance of the RK schemes. We compare
analytic and computed electron orbits in a traveling nonlinear wave and also show self–
consistent PIC simulations describing plasma flow in the vicinity of a lower hybrid antenna.
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1 Numerical stability of 2nd order Runge–Kutta integration schemes

In (PIC) simulations with many particles and evolving on long time scales it
is essential to use a sufficiently simple, accurate and stable integration scheme for
the electron and ion equations of motion

dve,i/dt ≡ v̇e,i = qEz/m + ae,i ; dz/dt ≡ ż = v , (1)

where ae,i are the external acting forces per unit mass, q/m is the particle charge to
mass ratio and Ez is the self–consistent electric field determined from the Poisson
equation. Accuracy and stability of an integration scheme do not go hand–in–hand
and need to be discussed separately [4]. Accuracy has to do with the order and
magnitude of the lowest order truncation terms, while stability refers to the evo-
lution of numerical perturbations. Here we concentrate on stability. Accuracy is
evident from the scheme lowest–order truncation term.

As discussed in detail in [5], Ez is only a function of time and particle position.
If, in addition, the external forces ae,i acting on the particles are also independent
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of velocity, then the leapfrog method (LF) [1, 4, 5] can be used for integrating
the equations of motion (1). In the LF method the particle velocities v and positions
z are at each time step ∆t advanced as

vn+1/2 − vn−1/2 = ∆t an , zn+1 − zn = ∆t vn+1/2 , (2)

where the subscripts indicate time–levels. The LF method is manifestly time–
centered and reversible and second order acuracy is easy to verify. Furthermore,
the mapping (2) is area–preserving, since its Jacobian is unity:

J = det

(

∂vn+1/2/∂vn−1/2 ∂vn+1/2/∂zn−1

∂zn+1/∂vn−1/2 ∂zn+1/∂zn−1

)

=

= det

(

1 ∆t ∂an/∂z
∆t 1 + ∆t2∂an/∂z

)

= 1 .

(3)

Area preservation is helpful but does not imply unconditional numerical stabil-
ity. Instability can arise in difference schemes as a result of normal modes which are
not solutions of the exact differential equation. For example, the stability condition
for the difference scheme (2) is [4]

0 ≤ −Γ ≤ 2 ; Γ = (∂a/∂z)
(

∆t2/2
)

. (4)

For the linear oscillator a = − ω 2
0 z the condition (4) implies 0 ≤ ω 0∆t ≤ 2.

From a purely computational point of view a great advantage of the LF method is
that it requires only one evaluation of the force per time step. Unfortunately, LF
cannot be used in many situations of physical interest. A significant example of a
velocity–dependent force is the Langevin (i.e. Monte Carlo) process [6]

∆ v = F ∆t + σ
√

2D ∆ t , (5)

which can represent particle velocity–space diffusion due to collisions [2] or radio–
frequen-cy heating [3]. In (5) D and F are, respectively, the diffusion and friction
coefficients and σ is a normally distributed random variable with zero mean and
unity variance.

Our aim is to identify an integration scheme which is not limited to forces
independent of velocity and which is numerically not unconditionally unstable. We
limit here our attention to the explicit 2nd order Runge–Kutta (RK) scheme [7, 8]
and suitable modifications thereof. The 2nd order RK method [7] for an equation
of motion leads to the scheme

vn+1 − vn = ∆t
2

(

an + a∗

n+1

)

, zn+1 − zn = ∆t
2

(

vn + v∗

n+1

)

v∗

n+1 = vn + ∆t an , a∗

n+1 = an (tn + ∆t, vn + ∆t an, zn + ∆t vn) ,
(6)

which requires two evaluations of the applied force, one at t = tn and one at
t = tn + ∆t. Unlike (2), the scheme (6) is, however, not area preserving since
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JRK = 1 + ∆t
∂a

∂v
+

(∆t)4

4

(

∂a

∂z

)2

(7)

A substantial improvement can be immediately obtained by exploiting the prop-
erty of equations of motion which allow at no extra effort in computation to first
evaluate the velocity vn+1 and to use that, instead of the anticipated velocity v∗

n+1,
in the position equation of (6). This modified RK scheme (henceforth denoted by
MRK) is therefore partly implicit and its Jacobian is

JMRK = 1 + ∆t
∂a

∂v
(8)

For forces independent of velocity the MRK scheme is therefore area–preserving.
The RK schemes are clearly only as good as the approximation (6) for a∗

n+1. We
will therefore also examine the midpoint Runge–Kutta(MPRK) scheme [8], which
likewise requires two evaluations of the force per time–step, one at t and the other
at the midpoint t + ∆t/2. The area–preserving form of the MPRK scheme is

vn+1 − vn = ∆t am , zn+1 − zn = ∆t
2

( vn + vn+1)
am = an (tn + ∆t/2, vn + an∆t/2, zn + vn∆t/2) ,

(9)

for which second order accuracy is easy to verify.
We now examine the stability of the RK schemes following the amplification

matrix method of Hockney and Eastwood [4]. The present treatment will clarify
the role of the Jacobian defined by (3). The above schemes all have the form of a
mapping of (vn, zn) onto (vn+1, zn+1):

vn+1 = f(vn, zn) ; zn+1 = g(vn, zn) (10)

Perturbations (ǫv, ǫz) of the variables (v, z) are easily found to satisfy the equation

(

εv

εz

)

n+1

= (J)

(

εv

εz

)

n

; (J) =

(

∂f/∂vn ∂f/∂zn

∂g/∂vn ∂g/∂zn

)

(11)

where (J) is the Jacobian matrix. If the eigenvalues λ of (J) lie within or on
the unit circle of the complex plane, then perturbations do not grow in the inte-
gration process. This is the stability condition. The eigenvalues are obtained from
the characteristic equation det(J − λ) = 0, i.e. from

λ2 − λ (∂f/∂v + ∂g/∂z) + J = 0 . (12)

For the LF and the area–preserving RK schemes Eq.(12) becomes

λ2 − 2λ (1 + Γ ) + 1 = 0 , (13)

while for the basic RK scheme (6) we obtain

λ 2 − 2λ (1 + Γ ) + 1 + Γ 2 = 0 . (14)
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The stability parameter Γ is defined in (4). The roots λ1 and λ2 of Eq.(12) satisfy
λ1λ2 = J . In the interval given by (4) the roots of (13) are complex–conjugate and
therefore stable. Elsewhere the area–preserving schemes are unstable. In contrast,
the basic RK scheme satisfying (14) is seen to be unconditionally unstable. In the
next section 2 we give numerical examples illustrating this.

2 Numerical examples

In order to illustrate the practical performance of the schemes discussed above
we now compute electron trajectories in a nonlinear propagating wave, i.e. we solve
the equation

v̇ = ω vq cos(ω t − kz) , ż = v . (15)

Here vq = eE0/mω is the quiver velocity and E0 is the applied electric field
strength. For our purposes it is important that a first integral of (15) exists in
the wave frame of reference. This permits an easy check on the stability of the
integration process. With the transformation

z′ = z − ω t/k , v′ = v − ω/k (16)

the explicit time dependence is removed from (15) and the first integral is

v′2 = v′

0

2
+ U0 (sin kz′ − sin kz′0) , (17)

where U0 = 2ωvq/k is the maximum potential energy. When v′2 is negative in some
range of z′ then the electron is trapped on a closed orbit within the separatrix.
Ideally, the electron will trace the trapped orbit indefinitely, but loss of accuracy
and stability of the integration process will lead to departures from the exact orbit.
For our example we take E0 = 3.5 kV/cm, ω = 3.7 GHz, k = 750 m−1 and initial
conditions t0 = 0, v0 = ω/k, kz0 = π/6 on a trapped orbit. The reference orbit (17)
then has v′

0 = 0 and k′

z0 = π/6.
We now present some integration results as function of the stability parameter

Γ defined in Eq. (4), where ω2
0 is now replaced by the bounce frequency ω2

B = kωvq.
We will compare the exact orbit (17) with LF and RK orbits computed in the fixed
reference frame (v, z). The orbits are then transformed to the wave frame via (16).

Figures 1 a,b and 2 compare the exact orbit (17) with the LF and RK orbits.
Figure 1a shows the basic RK orbit and Fig. 1b the modified RK orbit for Γ = 0.05.
Even for this small value of the RK orbit has already collapsed and the MRK orbit
is starting to spread out. In Figs 2 a,b we show midpoint RK results for Γ = 0.05,
and 0.5, respectively. The MPRK orbits exhibit remarkable stability even as Γ
approaches the stability limit. In contrast, the phase space shear of the leapfrog
orbits is seen to increase with Γ . This tendency of the leapfrog scheme most likely
owes to the phase space shear associated with the shifted velocity and position time
levels. This also demonstrates that phase space area preservation does not protect
orbits against deformation. An unexpected result, most likely due to a smaller
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truncation error, is the superior performance of the MPRK scheme over the MRK
scheme.

Next, we present 1–D (toroidal) PIC simulations along a 16 wave–guide lower
hybrid (LH) grill [3] surrounded by field–free plasma regions. The boundary con-
ditions are a Maxwellian particle influx to compensate for the outflow. In Eqs (1)
the only force acting on the ions is EZ . In the first case we compute full electron tra-
jectories in the LH grill field a = vq cos[ωt−ϕ(z)], where vq is defined after Eq. (15),
ϕ(z) is the wave–guide phasing and we integrate Eqs (1) using the leapfrog method.
Selected results are shown in Fig. 3. In the second case we represent the electron
response by a Langevin process (5), where the diffusion and friction coefficients are
given in [3], and we integrate Eqs (1) using the Runge–Kutta method. The results
are shown in Fig. 4.

3 Conclusions

We have tested the suitability of 2nd order Tunge–Kutta (RK) integration
schemes for possible application in PIC codes with the result that schemes pre-
sented in the literature [7,8] are numerically unstable with respect to accumula-
tion of round–off errors. However, with an implementation, presented herein, which
preserves area in the integration process, stability is achieved under the same con-
ditions as for the leapfrog method. Of the two area–preserving RK methods dis-
cussed herein, the midpoint method proves more accurate. We conclude that one
extra evaluation of forces is a little price to pay for a Runge–Kutta scheme whose
stability is no worse than that of the LF method and which can be easily applied
with forces of any type acting on the particles.
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Fig. 1. Exact orbits (17), LF orbits (2), and orbits from a) the basic RK and from
b) the MRK schemes (7), for Γ = 0.05. The basic scheme has collapsed and the MRK

orbit is already spreading out.
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Fig. 2. Exact orbits (17), LF orbits (2), and orbits from the midpoint RK scheme (10)
for a) Γ = 0.05 and b) Γ = 0.5. In a), the exact and midpoint RK orbits coincide.
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Fig. 3. PIC simulation of plasma response to the LH grill electric field with Newton
electron dynamics and the leapfrog integration method. a) The electron and ion densities
exhibit a quasi–neutral response. b) Electron and ion temperatures vs position. The elec-

trons, as expected, are strongly heated.

Czech. J. Phys. 54 (2004) C107



V. Fuchs, J. P. Gunn

Fig. 4. PIC simulation of plasma response to the LH grill electric field with Langevin
electron dynamics and the Runge–Kutta integration method. a) Electron and ion densities

and b) electron and ion temperatures vs position.
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