SECONDARY ELECTRON EMISSION IN A DETECTOR OF PLASMA FAST NEUTRALS

K. Jakubka, J. Stöckel

Institute of Plasma Physics, Czechoslovak Academy of Sciences, Prague

Many presently operating corpuscular diagnostic apparatuses don't work at ultrahigh vacuum condition [1]. The incident neutral flux cannot destroy the equilibrium between the active surface of a detector and background gas molecules. Unfortunately, only a single paper [2] treats systematically secondary emission from "dirty" surfaces.

In this work we present the measured secondary emission coefficients for various light atoms, molecules (\wp) and ions (\wp) incident on Cu-target in the ene r range 10² - 10⁴ eV at the conditions, similar to those in plasma experiments. The measurements were performed with an adapted apparatus described previously $\lceil 3
ceil$. Monoenergetic ion beam, extracted from PIG-ion source, was momentum-analyzed and focused into a gas-filled neutralization cell. Fast atoms resulting from charge-exchange collisions struck normally Cu-target of the detector. The apparatus was evacuated by diffusion pumps with "SANTOVAC" as pumping fluid, background preassure in the vicinity of the detector being about $(1-3).10^{-4}$ Pa. Intensity of the neutral beam was calculated from the measured gas density in the neutralization cell and known charge-exchange cross-section. To check a role of scattering in the charge-exchange collisions, the -easurements of scattering angle with an iris diaphragm installed between the neutralization cell and the detector was performed. The half angle of the neutralization cell ($\sim 5.7^{\circ}$) was found to be sufficiently high to allow the detection of most neutrals created in the neutralization cell.

Supposing the secondary emission from a gas-covered surface is dominated by binary encounters between the primary atoms and adsorbed molecules, we plot our results of f-measurements as function of excess C.M. energy $E_{CM}^ E_1^-$ (where E_1^- -ionization potential of the adsorbed molecules). In such a plot the electron production cross-section for different atoms and molecules shows a similar behaviour [2]. For simplicity, H_2^0 molecules were assumed to be the principal adsorbed species (M = 18, E_1^- = 12,6 eV). Following Fig. 1 the values of f for primary H_1^0 , H_2^0 , H_2^0 , H_1^0 , H_1^0 , H_1^0 , H_2^0 , the shapes of the curves agree well with the measurement of f for f for f for f and f and f are the same of the curves agree well with the measurement of f for f

 N_2^0 and 0_2^0 exhibit a different behaviour. The slope of the dependence is much higher but agrees with conclusions of [2]. It should be noted that we have any information nor about amount of excited-state molecules, nor about the degree of dissociation in the primary N_2 , 0_2 beams.

The results of policy -ratio measurements are summarised in the following table:

${f E_{lab}}/$ keV /	0,2	0,3	0,5	0,7	1	2	3 5	7	10	
H ₁	·			-1,30±	0,15-					
H ₂		· · · · · · · · · · · · · · · · · · ·		_1,31 <u>+</u>	0,06-		-,			
He	0,50	0,68	0,89	1,01	1,18	1,19	1,31	1,29	1,35	1,34
N_1	1,94	1,78	1,58	1,50	1,39	1,12	1,25	•		
01	1,03 ± 0,08									
N_2	•	-2,36	± 0,38							
02	· -	-2,88	± 0,56					•		

REFERENCES

^[1] Šunka P., et al.: Proc. of the ICCPCNFR, Berchtesgaden 1976 vol.2 p.535.

^[2] Amme R.C.: H. Chem. Phys. 50 (1969), 1891.

^[3] Kisljakov A.I., et al.: ŽTF 65 (1975), 1545.

^[4] Fleischmann H.H., Tuckfield R.G.: Nuclear Fusion 8 (1968), 81.

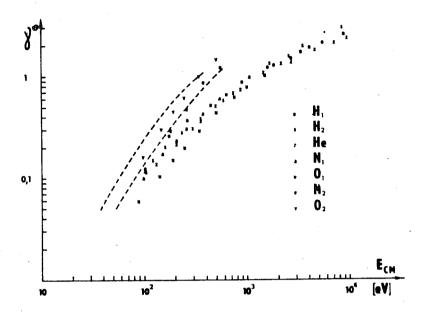


Fig. 1