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On the basis of a fully non–linear numerical solution of the Vlasov–Poisson equa-
tion we demonstrate that in the Fourier transformed velocity space the free streaming is
a non–linear multimode phenomenon. In the transformed space the oscillatory part of the
disturbance (plasma oscillations) is uncoupled from its free streaming part (the one that
in the linearized treatment escapes into infinity) but the free streaming part is strongly
coupled to plasma oscillations. It exercises a complicated movement in the Fourier trans-
formed phase plane accompanied by dispersion.
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1 Introduction

In our recent papers [1, 2, 3, 4, 5] we drew attention to an alternative approach to
the problem of Vlasov plasma oscillations which is based on the Fourier transformed
velocity space.

We have shown that, in linear approximation, in the Fourier transformed (FT)
velocity space the evolution of a disturbance of a Vlasov plasma equilibrium be-
comes a scattering process on a scattering centre located around the origin of the
FT velocity space. In that space the free streaming of particles manifests itself
by a simple unidirectional shift of the Fourier transform of the initial perturba-
tion rather than by the creation of fine–scale structures as observed in the original
velocity space. The electrostatic interaction of particles creates an oscillating and
radiating structure trapped around the origin of the transform space–the Landau
damped plasma oscillations.

In linear approximation the plasma oscillations and the free streaming part of
the disturbance are uncoupled and completely separated from each other. It is a re-
markable fact that this remains partly true even in the fully non–linear treatment
of the same problem. In this paper we demonstrate that the plasma oscillations
remain uncoupled from the free streaming but the free streaming is now strongly
coupled to plasma oscillations. Numerical solution of the non–linear Vlasov–Poisson
equation shows that the part of the disturbance that in linear approximation sim-
ply escapes into infinity now exercises a complicated movement in the FT phase
plane. The free steaming thus becomes a multimode phenomenon. The simulations
in addition reveal that the disturbance slowly disperses, predominantly in the wave
number space, and disappears almost completely after some tens of plasma periods.

To explain this behaviour we have constructed a simple model based on the
observation that the FT Vlasov equation describing the movement of the escaping
disturbance becomes approximately the Liouville equation of the linear oscillator
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with a Hamiltonian periodically dependent on time. Numerical integration of the
corresponding canonical equations (equations of the linear oscillator with a periodic
restoring force, equivalent to the Mathieu equation) shows the same complicated
trajectory in the FT phase plane as actually observed in simulations. Moreover it
shows that the movement is oscillatory with periodic recurrence back to the origin
of the FT phase plane. But due to its slow dispersion the disturbance disappears
before any recurrence can occur. As an important consequence, the well–known
filamentation effect in the original phase plane should also slowly disappear.

2 The Fourier transformed Vlasov–Poisson equation

Consider a spatially homogeneous collisionless plasma of electrons with the equi-
librium distribution function F (v) normalized to unit density and with immobile
ions forming a neutralizing background. Denoting by e, m and N the electron
charge, mass and number density, respectively, we write the Vlasov equation for
the perturbation distribution function f(x, v, t) as

∂f(x, v, t)

∂t
+ v

∂f(x, v, t)

∂x
+

eN

m
E(x, t)

∂F (v)

∂v
+

eN

m
E(x, t)

∂f(x, v, t)

∂v
= 0, (1)

the perturbation electrostatic field E(x, t) being given by the Poisson equation

∂E(x, t)

∂x
= 4πe

∫

∞

−∞

f(x, v, t) dv. (2)

We expand the solution into a Fourier series with respect to the spatial coordinate
x (periodic boundary condition in space) and Fourier transform with respect to the
velocity coordinate v

ϕm(q, t) =
1

L

∫ L

0

∫

∞

−∞

f(x, v, t) eimk1xeiqvdx dv, (3)
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∫

∞

−∞

F (v) eiqv dq, (4)

Em(t) =
1

L

∫ L

0

E(x, t) eimk1xdx, (5)

where m = 0,±1,±2, . . ., L is the spatial period and k1 = 2π/L is the wave number
of the first space harmonic. The Poisson equation (2) thus becomes

Em(t) = − 4πe

imk1
ϕm(0, t). (6)

With this result the Fourier transformed Vlasov–Poisson equation may be written
as (we use the standard dimensionless variables)

∂ϕm(q, t)

∂t
− mk1

∂ϕm(q, t)

∂q
+ qΦ(q)

1

mk1
ϕm(0, t)

+

∞
∑′

l=−∞

qϕl(q, t)
1

(m − l)k1
ϕm−l(0, t) = 0,

(7)
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where the prime at the sum sign means that the term with m − l = 0 is omitted.
In order that f(x, v, t) be real, ϕm(q, t) must fulfil a condition

ϕm(q, t) = ϕ−m(−q, t). (8)

3 Numerical analysis of the initial value problem

To solve numerically the Fourier transformed Vlasov–Poisson equation (7) we
used the method of lines which proved to be simple, efficient and easy to imple-
ment. We introduced a numerical grid on the q–axis, utilized a finite–difference
scheme to discretize the q–derivative in and then solved the resulting set of ordi-
nary differential equations in time by some suitable ODE solver. For details see
[3, 5].

We assume a Maxwellian equilibrium distribution function F (v) and a Maxwell-
ian initial perturbation f(x, v, 0) and excite both the first harmonics m = ±1 with
equal amplitude. The rest of the 16 harmonics used (plus the zero harmonic) has
initially zero amplitude. This corresponds to the total initial distribution function
of the usual form

F (v) + f(x, v, 0) =
1√
2π

1

vT eq
e
− 1

2

(

v
vTeq

)2

(1 + ε cos kx) (9)

which is an even function of velocity and coordinate so that its Fourier transform
is also even. The reality condition (8) then tells us that the Fourier transform is
real and stays real at any time. This property enables us to minimize the number
of ODE to be solved. The amplitude of the perturbation ε was chosen 0.4.

The results obtained with the program provide some insight into the mechanism
of the non–linear interaction between the modes, especially through visualization
of the evolution on the q–axis and in the Fourier transformed phase plane (the
plane of the wave number k corresponding to the x–coordinate and of the Fourier
transformed variable q corresponding to the velocity v).

If we look into the Fourier transformed phase plane we see at the beginning
waves propagating in the direction of advection (caused by the second term in
(7)) in the positive k half plane and in the opposite direction in the negative k
half plane, as in the linear case. After a while a formation resembling a collection of
Van Kampen–Case eigenmodes is generated. The non–linear interaction establishes
a highly coherent quasistationary wave pattern permanently flowing in a circular
manner around the origin of the Fourier transformed phase plane (fig. 1). This flow,
among other things, maintains the slowly oscillating electric field.

This quasistationary wave pattern is obviously close to the Fourier transform of
a superposition of two BGK modes as conjectured by Demeio and Zweifel [6] and
Buchanan and Dorning [7]

ϕm(q, t) =
1

2
ei(mk1t+q)V ϕ̃m(q) +

1

2
e−i(mk1t+q)V ϕ̃m(q). (10)
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One of these modes propagates with velocity V , the other with velocity −V . In
order that ϕm(q, t) be a real and even function of m and q it is sufficient that
ϕ̃m(q) be a real and even function of m and q.

In the Fourier transformed phase plane the superposition looks like a collec-
tion of monochromatic waves, one for each m, propagating in the direction of the
q–axis and modulated by a time independent form factor ϕ̃m(q). Each wave has the
same wave number V and, if V = σ/k, its frequency σm (and its phase velocity) is
proportional to m, σm = mσ and this is what is actually observed.

Apart from the wave field in the Fourier transformed phase plane, we observe
there another spectacular phenomenon that evolves on the background of the quasi-
stationary wave pattern and that corresponds to the freely propagating scattered
initial perturbation escaping into infinity in the linear case. We see the outgoing
initial perturbation propagating in the direction of advection while violently os-
cillating transversely in the direction of the k–axis across many k–modes and in
synchronism with the plasma oscillations. The amplitude of these transverse move-
ments gradually increases and becomes so large that the outgoing perturbations
penetrate deep into the neighbouring k–half planes, with the opposite sense of ad-
vection, where they are somewhat decelerated to produce a characteristic pattern
of pirouettes (fig. 2). This phenomenon is responsible for the well known filamen-
tation effect in the original phase plane (the content of higher m and q Fourier
components increases).

4 A simple model of the non–linear free streaming

It is not difficult to explain the rather strange behaviour of the scattered dis-
turbance. Since the scattered disturbance practically does not produce any electric
field, as in the linear case, the quasistationary wave pattern is entirely uncoupled
from the scattered disturbance. Thus, to describe its movement we can consider
ϕm(0, t) in eq. (7), i.e., the electric field, as given and of approximately constant
amplitude so that we can write approximately

ϕm(0, t)

mk1
= λDmτ(t). (11)

Since ϕm(0, t) is real and even with respect to m, m = 0,±1,±2, . . ., the sequence
Dm is odd with respect to m and decreases with |m|. The function τ(t) describes
the time dependence of the electric field which is harmonic with very good approx-
imation, τ(t) = cos ω1t, where ω1 is the frequency of the lowest Landau eigenmode.
The parameter λ characterizes the amplitude of the electric field. The convolution
sum may be regarded as an approximate finite difference formula for the derivative
with respect to k of a function ϕ(k, q, t) of a continuous variable k, at grid points
k = mk1. Since the Fourier transform of the equilibrium distribution function Φ(q)
decreases very rapidly with q we can neglect the third term in eq. (7) so that the
equation for the evolution of the distribution function ϕ(k, q, t) of the scattered
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disturbance approximately becomes

∂ϕ(k, q, t)

∂t
− k

∂ϕ(k, q, t)

∂q
+ λqτ(t)

∂ϕ(k, q, t)

∂k
= 0. (12)

This is the Liouville equation of a linear oscillator with a Hamiltonian periodically
dependent upon time (a periodic restoring force)

H(k, q, t) =
1

2
k2 +

1

2
λτ(t)q2. (13)

Numerical integration of the corresponding canonical equations of motion (the equa-
tions of characteristics of eq. (12))

k̇ = λτ(t)q, q̇ = −k (14)

produces a trajectory in the FT phase plane which is pictured in fig. 2. It is identical
with what is actually observed in simulations. Moreover it shows recurrence back to
the origin and than again away from the origin and so on. However, finite difference
formulas are known to produce dispersion and damping, the more so if they are so
imperfect as the one generated by the electric field. The dispersion and probably
also the damping of the scattered disturbance is therefore very strong and takes
place predominantly in the k direction as clearly visible in fig. 1. The disturbance
thus disperses completely before any recurrence can occur.
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Fig. 1. The fully developed quasistationary wave pattern in the Fourier transformed phase
plane (k1 = 0.4, t = 49.). The highly dispersed outgoing disturbances just intrude into

the neighbouring k half planes.
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Fig. 2. The trajectory of the scattered disturbance in the FT phase plane as calculated
from the simple model of the non–linear free streaming (k1 = 0.4, ω1 = 1.285, λ = 0.04).
The curve is quasiperiodic, starts at k = 0.4, q = 0, continues downwards, then turns

upwards and returns again to where it started.
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