

RUNAWAY ELECTRON STUDIES VIA HXR SPECTROSCOPY AT GOLEM, COMPASS AND TCV

J. Cerovsky^{1,2}, O. Ficker^{1,2}, E. Tomesova¹, L. Simons³, V. Svoboda², J. Mlynar^{1,2}, U. Sheikh³, M. Hoppe³, J. Decker³, J. Caloud^{1,2}, V. Weinzettl¹, M. Hron & the COMPASS team* and TCV team**

¹ Institute of Plasma Physics of the CAS, Prague, Czech Republic ² Faculty of Nucler Sciences and Physical Enginneering, Czech Technical University in Prague, Prague, Czech Republic ³ SPC, EPFL, Lausanne, Switzerland * See the author list in M. Hron et al 2022 Nucl. Fusion 62 042021 ** See the author list of H. Reimerdes et al 2022 Nucl. Fusion 62 042021

MOTIVATION

Runaway electrons (RE) = high energy particles generated under some experimental conditions in tokamaks – high toroidal electric field and low plasma density

- \rightarrow impact of RE can cause a serious damage to plasma facing components
- \rightarrow generation of RE needs to be avoided or mitigation strategies needs to be developed Electron bremsstrahlung radiation - generated during collisions between electrons and plasma particles or solid state materials \rightarrow could be used for RE characterization e.g. estimation of RE population, estimation of RE energy
- \rightarrow same set of CeBr₃ installed at three tokamaks to characterized RE and viability of a such system

COMPASS

R [m]	a [m]	l _p [kA]	Β _Τ [T]
0.56	0.23	< 400	1.15 - 2.1
t _{plasma} [s]	I _{RE} [kA]	N _{RE} [-]	E _{RE} ^{Max} [MeV]

Discharge: 21298

- Operated till 8/21 at IPP in Prague, suitable testbed for RE physics \leftarrow high flexibility and rich set of RE oriented diagnostics
- Standard available HXR diagnostics: **HXR** - Nal(TI) crystal coupled to PMT connected to high impedance and slow DAS – signal proportional to photon flux, weak energy dependence, located in exp. hall HXR-S – EJ410 scintillator coupled to PMT, primarily neutron detector, but sensitive to high photon flux,

SCINTILLATION DETECTORS USED

 generated bremsstrahlung radiation caused by runaway electrons measured by set of detectors two scintillation detectors equipped by CeBr₃ scintillation crystals \rightarrow fast decay time (18-25 ns) and superior energy resolution (4% FWHM at 662 keV) to Nal(TI) – standard in gamma spectroscopy

 CeBr₃ spectrometers applied at three different tokamaks – GOLEM, COMPASS, TCV \rightarrow Routinely operated at GOLEM tokamak Demountable scintillation crystals manufactured by Scinonix

Detector	Photomultiplier tube	Crystal size		
CeBr ₃ (A) Hamamatsu R3998-02		1"x1"		
CeBr ₃ (B)	Hamamatsu R1234A	1"x1"		
 Semi-automatized peak detection algorithm and fitting procedure 				

t_{plasma} [S]

located in experimental hall **blind PMT –** disconnected photomultiplier tube located outside of experimental hall, sensitive to high photon fluxes Spectrum of HXR (21298) 3 B 104 -<mark>_</mark> 10³ Ω U **10**² 10² 0 **5000 10**¹ $E_{HXR}^{max} \approx 12.$ 10 6 8 10 12 14 2 4 E [MeV] 150 ູ ເຊິ່ 125 36.5 ns Pul 10 Pulse height [MeV]

I_p[kA] Β_Τ [T] a [m] 0.25 < 1000 < 1.43 E_{RE}^{Max}[MeV] N_{RE} [-] I_{RE} [kA] < 10¹⁶ < 150 < 25

R [m]

0.88

< 2

10⁻³

CeB

 Standard available HXR diagnostics: **PMTX** - blind photomultiplier located in experimental hall – measurement of flux of photons, weak dependence on photon energy **HXRS** – tomographic hard x-ray camera system (Cd(Te)) usable for 10-250 keV – not optimized RE studies and high fluxes of high energetic photons

R [m]	a [m]	l _p [kA]	Β _T [T]
0.4	0.085	< 8	< 0.8
t _{plasma} [s]	I _{RE} [kA]	N _{RE} [-]	E _{RE^{Max}[MeV]}

GOLEM

 Various scintillation detectors operated in pulse mode with dedicated fast data acquisition system \rightarrow 2x CeBr₃, YAP(Ce), 2x Nal(Tl) coupled to PMTs

 Small size tokamak operated at FNSPE CTU in Prague (former tokamak CASTOR operated at IPP Prague – plasma wave interaction, edge plasma) Dedicated to educational purposes and diagnostic testing or RE oriented research

- Favorable conditions for runaway electron generation
- \rightarrow high loop voltage (E \approx 2-5 V/m)
- \rightarrow low density (n_e $\approx 10^{18} \, \mathrm{m}^{-3}$)

 Density of plasma could be partially controlled by initial pressure of working gas

CONCLUSION

Experiments successfully conducted at the three different devices – GOLEM, COMPASS, TCV

 \rightarrow viability of a diagnostic concept was shown and diagnostic was tested under different experimental conditions (pioneering tests for further diagnostic development at all devices)

- Acquired spectra needs to be further verified and calibration needs to be revisited \rightarrow modelling of radiation transport with MC code is essential (e.g. FLUKA, GEANT4)
- Simplified forward modelling of expected pulse height spectra using FLUKA \rightarrow exponential-like shape of pulse height spectra could be obtain for exponential-like energy distribution of RE

MODELING OF HXR RADIATION USING FLUKA

EUROPEAN UNION European Structural and Investment Funds OP Research. **Development and Education**

