TOKAMAK GOLEM FOR FUSION EDUCATION - CHAPTER 9

V. Istokskaia¹, M. Shkut¹, J. Cerovsky^{1,2}, M. Farnik^{1,2}, L. Hudec¹, P. Macha¹,

O. Grover^{1,2}, V. Svoboda¹, J. Štockel^{1,2}, J. Adamek², J. Krbec^{1,2}

¹ Faculty of Nuclear Sciences and Physical Engineering CTU in Prague, Prague, Czech. Rep. ² Institute of Plasma Physics CAS, v.v.i., Prague, Czech. Rep.

The GOLEM Tokamak

- Parameters: $B_t < 0.5$ T, $I_p < 8$ kA, pulse length < 15 ms
- An educational device for domestic as well as for foreign students via remote participation/handling
- Students become familiar with probe measurements, data analysis and basic tokamak diagnostics.
- Subject of several Bachelor's degree projects and Master's degree theses each year
- At present used in an experimental laboratory course in the basic physics curriculum.

Electron density dependence

- Measurements of density dependence on other parameters of plasma.
- No influence of working gas preassure.
- Dependence on chamber temperature and plasma current was determined.

Electron density dependence on gas pressure before and after conditioning.

References

- [1] V. V. Parail, O. P. Pogutse, Nuclear Fusion, **18**, 3(1978).
- [2] J. Adamek et al, Contributions to Plasma Physics, 54, 3, p. 279, (2013).
- [3] J. Adamek, et al., Rev. Sci. Instr. 87, 043510 (2016).
- [4] R.S. Granetz et. al., Physics of plasmas, **21**,7: 072506 (2014).
- [5] V. Svoboda, et al., Fus. Eng. and Des. **68**, 1310-1314 (2011).

Contact us

Tokamak GOLEM
Břehová 7, Prague
Czech Republic
golem.fjfi.cvut.cz
svoboda@fjfi.cvut.cz

Acknowledgment

This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS17/138/OHK4/2T/14.

The remote web control-room interface

- New wizard-like walk through remote control interface.
- Low risk of forgetting a setting, recommended setting available.
- All steps explained and accompanied by 3D model rendering.
- Access token further secures remote operation.

Right - Printscreen of the remote web control-room interface.

Anomalous Doppler Instability observation by the Ball Pen Probe

- Low density discharges ($n_e \sim 10^{18} \ {\rm m}^3$) in GOLEM exhibit an ADI, which is: manifested by 3 spikes of the $U_{\rm loop}$
 - accompanied with an increase of HXR followed by an increase of the line average density \rightarrow signature of an enhanced plasma wall interaction
- The edge plasma was analyzed by direct masurement of plasma potential with BPP.

Temporal evolution of: left - a low density H discharge, mid - plasma potential at r = 70 mm and of the HXR emission. Right - Radial profiles of the plasma potential during appearance of the ADI.

Runaway electron studies

- Low electron density (4 6 · 10^{18} m⁻³) and relatively high loop voltage (4-6 V) \rightarrow RE
- The improving plasma performance with the increasing number of discharges.
- Underestimation of the critical value of electric field E_{theor} by 3-10 times.

Left and Mid - Evolution of the mean intensity and mean U_{loop} during chosen sequence of discharges. Right - Comparison of theoretical and experimentally measured values of critical electric field 1: #25292, 2: #25508, 3: #25506, 4: #25507, 5: #25505.

Plasma current control

- A numerical code for vacuum discharge modeling + table-top model developed to achieve a flat-top plasma-current regime.
- An algorithm for resistance shaping was implemented and tested on experimental data.

Simulated chamber current flat-top regimes and corresponding resistance values, experimental data from shot #26023 added for comparison.

Plasma radiation studies

- Comparing different methods of measuring electron temperature of helium plasma.
- Coronal-radiative model and isolines of two different ratios was applied.
- Helium spectral lines 668.00 nm, 706.76 nm and 728.33 nm were used.

Electron temperature measuring in discharge #25611.