Investigation of runaway electrons at Golem

7th Meeting on Runaway Electron Modeling

J. Čeřovský^{1,2}, V. Svoboda¹, O. Ficker^{1,2}, P. Dhyani¹, P. Švihra¹, L. Novotný¹ ,V. Linhart¹

¹ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague

² Institute of Plasma Physics, Czech Academy of Sciences, Prague

Outline

- 1. Golem tokamak
- 2. Experimental setup
- 3. Center of Advanced Applied Sciences CAAS
- 4. Diagnostic developments

Golem tokamak

R [m]	0.4
a [m]	0.085
I _p max [kA]	10
B _T ^{max} [T]	0.8
t _p [ms]	20

- former tokamak CASTOR at IPP → now located at FNSPE CTU in Prague
- serves as an educational and training device for students of plasma physics
- testbed for diagnostics development
- scientific program: edge plasma and runaway electron studies

Typical Golem discharge

Parameters of discharge:

 $U_{cd} = 350 \text{ V}$

 $U_{bt} = 1200 \text{ V}$

 $p_{wg} = 14 \text{ mPa}$

 $t_d = 1 \text{ ms}$

Upcoming upgrades:

real time positional feedback gas puffing system fast camera new interferometer

Experimental setup

RE related diagnostics:

NaI(TI) YAP(Ce) Timepix detector Strip detector 30 personal dosimeters

+ 2 additional NaI(TL)

Attempts of installation of Cherenkov detector

Future diagnostics:

2 scintillation probes (YAP) Tektronix MSO58

2 Timepix detector

Fast data acquisition

• sampling rate: up 35 Ms/s 4 Mirnov coil at limiter

bandwidth: 500 MHz

Rich magnetic diagnostics:

2 rings of Mirnov coils (16 coils)

Working group PLASMA:

Faculty of Nuclear Sciences and Physical Engineering Faculty of Electrical Engineering Faculty of Mechanical Engineering

Center of Advanced Applied Sciences

- support of multidisciplinary research
- broad collaboration of different faculties of Czech Technical University

Participating faculties:

Faculty of Nuclear Sciences and Physical Engineering
Faculty of Civil Engineering
Faculty of Mechanical Engineering
Faculty of Electrical Engineering
Faculty of Architecture
Faculty of Information Technologies

possibility to share experiences with different types of plasma

- → tokamak, Z pinch and laser plasma
- → opportunity study different mechanisms of generation of fast particles

Timepix3 detector

[Linhart, 2018]

- pixel semiconductor detector for detection of SXR and HXR radiation
- originally designed for imaging technique
 - → capable to resolve several events simultaneously
- consists of Timepix3 chip and silicon sensor
- → readout chip and conversionlayer (photons → charge)
- 65 536 independent pixels per chip
- → a large number of "independent"
 detectors → suppression of pileups

Timepix3 detector

- spectra recorded in forward and backward directions e. g. in current (blue) and co-current (red) directions
- → correlation with favourable direction of motion of RE

- recorded spectrum in Golem discharge #27758
- → maximum energy of RE around 500 keV?

PH32 detector

- silicon strip detector developed at the Center of Applied Physics and Advanced detection systems at FNSPE CTU
- different regimes of detector operation
 - → hit counting
 - → deposited energy measurement
- different modes of operation
 - → high gain mode sensitive to SXR
 - → low gain mode sensitive to protons or heavy ions

[Švihra 2018]

PH32 detector

- the detector placed on a radial manipulator inside vacuum vessel
 - → direct observation of RE
- first measurement with segmented semiconductor detector in the vacuum vessel of tokamak
- ongoing improvement of shielding against EMI

[Švihra 2018]

- a large number of diagnostics useful for investigation of runaway electrons
- development of novel diagnostic techniques

How can be Golem helpful for runaway electrons studies?

- [Linhart 2018] Linhart, Vladimir, et at. "First Measurement of X-rays Generated by Runaway Electrons in Tokamaks Using a TimePix3 Device with 1 mm thick Sillicon sensor." IEEE Nuclear Science Symposium and Medical Imaging Conference (2018).
- [Svihra 2018] Svihra, Peter, et al. "Runaway electrons diagnostics using segmented semiconductor detectors." Fusion Engineering and Design (2018).