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Abstract
The sensitivity of a diamagnetic signal to several operational and geometrical
factors is analysed. Among them are the flux conservation in the plasma,
eddy currents induced in the outer structures in fast processes, toroidal
shift and deformation of the plasma boundary due to its energy change and
inhomogeneity of the confining magnetic field. It is shown that in each case,
under proper experimental circumstances, the contribution, unaccounted in the
traditional theory of diamagnetic measurements, can reach a level compared
with β (ratio of the volume-averaged plasma pressure to the magnetic field
pressure). The approach is fully analytical with all relevant dependences
shown explicitly, allowing easy estimates and suggesting a resolution of the
problem in order to restore the accuracy of finding β from diamagnetic
measurements. This essentially extends the analysis by Yamaguchi et al (2006
Plasma Phys. Control. Fusion 48 L73) of possible measures to improve the
separation of the useful fraction of the measured diamagnetic signal. The
approach is aimed at explaining the discrepancies between model estimates
and experimental results, unification of a knowledge obtained in separate
numerical studies, extending a theoretical basis of magnetic diagnostics and
uncovering potential dangers in interpretations. This is also an essential step
from traditional cylindrical theory to analytical derivations in the toroidal
geometry. The results are equally applicable to tokamaks and stellarators.

1. Introduction

Diamagnetic measurements are a useful tool for determining the plasma stored energy in
tokamaks and stellarators [1–9]. For interpretation a simple formula is used,

2
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J

B2
0

− β, (1)
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derived for a circular plasma cylinder more than 50 years ago [10] and first applied in
experiments on T-5 tokamak in 1965. Here

�� =
∫

loop
(B − Bv) · dSl , (2)

where � is the flux of the magnetic field through the diamagnetic loop and �� is the difference
between the current state and initial state when BJ = β = 0, B is the magnetic field, Bv is
the vacuum magnetic field (assumed unchanged in this case), �pl = B0Spl with Spl = πb2 the
transverse cross-section of the plasma column, b is its minor radius, B0 is the toroidal field,
BJ is the poloidal field at the plasma boundary (the field of the net toroidal current), β is the
ratio of the volume-averaged plasma pressure p to the magnetic field pressure B2

0/2.
Various improvements and modifications of (1) are possible [1, 8, 9, 11–13], but (1) is

sufficient for illustrating the central problem of the method: with β just several per cent or even
smaller, high precision of measuring two other terms in (1) is needed. Or else, for β estimates
we should look for a better relation than (1).

This was the backbone of the discussion in [9] on the accuracy of determining β from
diamagnetic measurements in the Large Helical Device (LHD), the largest helical device in
operation. The main subject was the effect of net toroidal current on the measurement of β,
with some corrections to the net current term in (1) [9, 11, 13]. One of the outputs of that study
was an estimate of the modified current term in (1) as 0.7% under some conditions. Even at
the highest β = 5% achieved in LHD [14, 15] this 0.7% is a large quantity. If the error bars of
order 10% become a practical requirement, the next step should be more precise calculation
of the terms represented in (1) and a search for other possible comparable contributions
to ��.

The candidates from earlier analysis [1, 12] for tokamaks are the toroidal corrections of
the order of βb2/R2 [1] in (1), where R is the major radius, and the dependence of �� on the
plasma elongation [12]. However, the shaping effects seem unimportant for a standard LHD
operation, and βb2/R2 gives only ≈0.03β for LHD parameters [9] b = 0.6 m, R = 3.6 m,
which is small.

This could be a good news if not for a large difference (several times!) found in [9] between
the diamagnetic β values calibrated by the new method based on 3D magnetohydrodynamic
(MHD) equilibrium calculations and that from a conventional method under the cylindrical and
large aspect ratio plasma model. This discrepancy remains mysterious, and it looks even more
puzzling in view of earlier analytical [16] and numerical [17] predictions that, for stellarators,
higher order corrections to the diamagnetic flux in (1) would be small, in qualitative agreement
with the statements on the toroidal corrections in [1].

The computational results in [9] are based on reliable models and codes and are compared
with experimental data. Therefore, the unaccountable difference between the approaches
cannot be disregarded and should be considered as a serious challenge to theory. Also note an
unexplained difference up to 20% of the plasma stored energy estimated by the diamagnetic
flux measurement and the profile measurements in LHD [18].

Our goal is to explore the sensitivity of a diamagnetic signal to the plasma ability to carry
the field lines frozen, transient eddy currents in the outer structures, pressure-induced plasma
shift and the change of plasma boundary due to changes in β as observed in [18]. Since (1) was
found [9] practically insufficient, our main target will be corrections to (1) due to the toroidal
effects that cannot be treated in the cylindrical model. Also, flux conservation, an inherent
attribute of ideal MHD [19] providing an additional constraint when the plasma equilibrium
evolves rapidly compared with magnetic diffusion [20], was not included in the mentioned
discussion of the diamagnetic measurements. Here we show that the flux conservation affects

2
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the result in a peculiar way, but does not prevent measuring β, if properly treated. Finally,
the external field can slightly change with β because of the currents induced in the vessel
wall or/and other metal structures [8, 9, 21]. We will show that instead of suppression of these
changes or compensation, as in DIII-D [8], this can be used as a useful effect. Also, some
estimates will be derived for this effect computationally treated for LHD in [9].

Our approach here is fully analytical with all relevant dependences shown explicitly. It
can be applied to tokamaks and stellarators.

2. General preliminary comments

The toroidal flux linked by a diamagnetic loop can be expressed as

�loop = �pl + �gap, (3)

where �pl is the toroidal magnetic flux through the plasma cross-section Spl,

�pl ≡
∫

plasma
B · dSpl, (4)

and �gap is the magnetic flux through the gap between the plasma and the diamagnetic loop:

�gap ≡
∫

gap
B · dSg. (5)

Here �pl corresponds to �dia + �Ip, and �gap to �ext + �vac in equation (1) in [9].
The diamagnetic loop can measure only the time derivative of the magnetic flux �loop,

which will give at the end

δ� ≡ �loop(t) − �loop(t0) =
∫

loop
[B(t) − B(t0)] · dSl , (6)

where t is the observation time and t0 the starting moment of integration. The purpose of
the measurements is to get information on the final equilibrium configuration, but δ� equally
depends on its parameters at t0. Antisymmetry of δ� with respect to t and t0 means that
interpretation of the measurements is improved with better knowledge of some reference state
at t0. The best could be ‘before the discharge’ with B(t0) the known vacuum field. Another
convenient possibility is to start from t0 when the plasma is good enough to be considered
as an ideal conductor. The latter implies evolution of the magnetic field under the frozen-in
constraint relating B(t) to B(t0).

Such a situation is typical for experiments with a fast increase in β when the heating
power rapidly increases, as, for example, in [3–5, 7, 9]. In theory the frozen-in constraints
are incorporated into the analysis of flux-conserving tokamaks [20, 22] and stellarators [13].
Flux conservation is an important part of disruption studies in tokamaks, including ITER [23].
There is one more area where the flux conservation concept should be applied: the edge
cooling experiments, see [24–27] and references therein. In these experiments abrupt (or
ballistic) response of the plasma to edge cooling is observed with an increase in the core
temperature on a time scale of 10–20 ms. This phenomenon is called puzzling [24], lacking
physical explanation [26, 27], unpredicted with proper accuracy by the existing models [25], a
transport enigma [24] still unresolved. Diamagnetic measurements can be a useful diagnostic
of the plasma energy changes in such experiments.

In these and similar cases evolution of the plasma parameters occurs on the time scale
much smaller than its resistive time, and the plasma can be considered as a perfect conductor.

3
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This means frozen-in magnetic field with the integral consequence �pl = const. Then a
diamagnetic loop can measure only a variation

δ�gap ≡ �gap(t) − �gap(t0) = SgapδBe − BeδSpl, (7)

where we represented �gap as �gap = BeSgap with Sgap = Sloop −Spl, Sloop the surface covered
by the loop, Spl the surface covered by the plasma and Be the external vacuum toroidal field
averaged over Sgap.

A question arises—what information on the plasma can be extracted from the
measurements producing a combination given by (7)? The goal of the measurements is the
evaluation of the plasma stored energy, so we have to know in what way δ�gap may be related
to β. The equilibrium equations alone are not sufficient for the answer. The key to the solution
is a nontrivial modification of the boundary conditions.

3. Flux-conserving plasma evolution and diamagnetic measurements

According to (3) and (7), if �pl is frozen, the measured diamagnetic flux must be δ�gap, a
function of δBe and δSpl. This apparent fact, a trivial consequence of definition (5), is strangely
ignored in theory of diamagnetic measurements and discussions.

With δ�gap as an only available quantity we have to find proper dependences of δBe

and δSpl on the plasma characteristics. In tokamaks and stellarators the external field can
be controlled to some extent [8, 9, 28], and δBe can be partly determined by this control. In
principle, δBe can be measured by using local probes outside the plasma or the diamagnetic
double loops [6]. The double loops give also two values of δ�gap with different Sgap, which
could allow one to find δSpl. This can also be done when several different loops are used as
described in [8]. In any case, the measurements can finally give us δSpl.

This sounds unusual since such a deformation of the plasma cross-section never manifested
itself as an easily visible equilibrium effect in experiments and was never discussed as dominant
in diamagnetic measurements. It is well known that the plasma shape is very sensitive to
the plasma parameters, and shape control is an important part of tokamak operation [8, 28].
Sophisticated methods and techniques are developed for tokamaks to minimize the difference
between the plasma boundary and the desired shape described by a large set of coordinates.
For example, the control system designed for ITER maintains the specified plasma current,
the position and the shape in spite of slow evolution of plasma parameters, rapid changes in
the additional heating and non-inductive current drive and other disturbances [28]. But in all
these cases the goal is to suppress any deviation from the target.

In addition, the problem of δSpl detection as a quantity related to diamagnetic
measurements was never addressed in theory (except several papers, see [21, 32]) and
experiments. However, recent studies [18] of the LHD plasma boundary change with β

have demonstrated that the related δSpl (though of a different origin from that we discuss
in this section) can be large enough to be detected. The goal of that study was to establish the
identification method for consistent shape and location of a plasma boundary with experimental
measurements based on numerical calculations of MHD equilibrium. Also, the results [18]
prove the importance of a careful definition of the plasma boundary and that disregard of its
evolution leads to incorrect interpretation of the equilibrium data.

This aspect was earlier emphasized in [17] with a numerical demonstration that a change
in the volume and the position of the plasma column in LHD strongly affects the signals of the
magnetic field pick-up coils. In [29] substantial impact of plasma boundary modulation on LHD
plasma stability was shown. Flux conservation was assumed in the numerical determination
of the plasma–vacuum boundary [29], which is related to δSpl in (7), but different from volume

4
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variations in [17, 18]. There is only one step from [17, 18, 29] to numerical and experimental
studies of the flux-conserving effects in stellarators with the use of magnetic diagnostics. Note
that change in the plasma boundary shape can be substantial in a low shear helical system even
at a relatively low β [30, 31].

Analytical estimation of δSpl that appears in (7) was discussed in [32]. Some integral
properties of equilibrium configurations with frozen magnetic flux were also discussed in [21].
Here we show some estimates in a cylindrical approximation, based on previous results.

Conservation of the toroidal magnetic flux in the plasma means that

δ�pl ≡ δ

∫
Spl

B · dSpl = 0, (8)

which can be written as

SplδB̄z + B̄zδSpl = 0 (9)

with �pl = B̄zSpl and

δB̄z ≡ B̄z

∣∣after

before (10)

calculated as a difference in the final and initial states. In (9) Bz stands for the toroidal field,
which is the field along the vertical axis z in the cylindrical model, the bar denotes the averaging
over the total cross-section of the plasma column:

f̄ ≡ 1

Spl

∫
f dSpl = 2

b2

∫ b

0
f r dr. (11)

The second equality here is for the circular plasma of minor radius b.
In (9) we need δB̄z which can be found from

B̄z = Be

(
1 − β

2
+

B2
J

2B2
e

)
, (12)

which is a consequence of the equilibrium equation in cylindrical approximation, see, for
example, [1, 19, 21, 33] for details. Here β ≡ 2p̄/B2

e and BJ = Bθ(b) is the poloidal field due
to the net plasma current, the same as in (1). With this formula and (9) we obtain from (7)

δ�gap = SloopδBe + δ�0
pl, (13)

where

δ�0
pl ≡ BeSpl

2

(
δB2

J

B2
e

− δβ

)
(14)

can be called the variation of the toroidal flux in the plasma when δBe = δSpl = 0. Tokamaks
and stellarators are the systems with small β (just several per cent). Accordingly, variations
δBe and δB̄z are small, and we keep here only the linear terms in β.

Let us recall that (13) is obtained under condition �pl = const, so that δ�loop = δ�gap. If
δBe = 0, which can be provided by the control of the toroidal field or special compensation [8]
of δBe, equation (13) gives exactly the signal expected for equilibrium plasma when its
deformation δSpl and flux conservation �pl = const are both disregarded. That is why
determining β by measuring δ� is possible even when the magnetic flux is frozen into the
plasma, with proper calibrations allowing separation of the hindering term SloopδBe in (13).

Let us emphasize once more that flux conservation in the plasma, �pl = const, does
not prevent reliable measurement of δβ only because the plasma is properly deformed with β

change, though this deformation is so small that it was never experimentally identified.
In this context, this is a useful property. On the other hand, it demonstrates high sensitivity

of the diamagnetic signal to the plasma shape. Under different circumstances this was also

5
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found in numerical calculations of two realistic free-boundary equilibrium sequences for the
LHD [17]. Below those results will be commented when other deformations of Spl will be
discussed. Before that we give analytical estimates for the first term in (13) when δBe appears
as a response of the outer conductors to the magnetic perturbation from the plasma.

4. Ideal wall and diamagnetic measurements

The term SloopδBe corresponds to �ext in [9]. According to [9], in LHD the field Be is changed
during the discharge because of the eddy currents in external coils such as helical and poloidal
coils and in structures such as the vacuum vessel and supporting shells. The contribution due
to δBe, whose evaluation was a part of the precise numerical calculations in [9], was found to
be a noticeable fraction of the measured diamagnetic signal in LHD. Here we present a simple
analytical estimate for δBe.

Assume that the plasma is surrounded with an ideal wall preventing the penetration of the
magnetic flux. Such a situation was described as requiring special measures in measuring the
diamagnetic signal also in DIII-D [8]. In this case the total magnetic flux

�w = �pl + �out (15)

through the cross-section Sw of the vessel must be conserved. Here, as introduced above, �pl

is the magnetic flux through the plasma cross section Spl, and �out = Be(Sw − Spl) is the flux
of the field Be in the plasma–wall vacuum gap Sw − Spl.

When the magnetic flux in the plasma is frozen-in (δ�pl = 0), the conservation of �w

means �out = const or

(Sw − Spl)δBe − BeδSpl = 0, (16)

which gives us

δBe = BeδSpl

Sw − Spl
= − Spl

Sw − Spl
δB̄z. (17)

In the last equality we used equation (9) to express δSpl and again disregarded the difference
between B̄z and Be, see (12) with β � 1 and B2

J /B2
e � 1. Equation (12) also implies that

δBe = δB̄z − δ�0
pl

Spl
, (18)

where δ�0
pl is defined by (14), and finally we have

δB̄z =
(

1 − Spl

Sw

)
δ�0

pl

Spl
. (19)

Then

δBe = −δ�0
pl

Sw
, (20)

and combining (13) and (20) we obtain

δ�gap = αδ�0
pl (21)

with α = αid if the wall is considered a perfect conductor:

αid ≡ 1 − Sloop/Sw. (22)

If the wall is not ‘ideal’, the contribution SloopδBe to (13) due to the plasma-induced δBe will
be smaller, so that

αid � α � 1, (23)

6
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where the lower limit comes from (22), and the upper limit corresponds to the non-conducting
wall or δBe = 0 in (13).

Expression (21) with α = αid shows two important things. First, the only contribution to
the diamagnetic signal in the flux-conserving case, δ�gap, depends on the loop size, as implied
by (22). Second, with α �= 0 the measured δ�gap is proportional to δ�0

pl.
Equation (22) gives αid = 0 for a loop just near the wall and, accordingly, δ�gap = 0.

This exactly reproduces the situation observed in the DIII-D tokamak with a loop originally
installed just on the inner side of the wall [8]. That loop has been removed with a motivation
that DIII-D vacuum vessel acts as a flux conserver on short time scales so that the diamagnetic
loop on the interior surface has no significant advantage in terms of time response [8]. We can
argue that such a loop could be useful on the longer time interval. Also, it could be used in
pair with some other loop for a direct measurement of δBe.

Proportionality of δ�gap to δ�0
pl defined by (14) means that, even with flux conservation

in the plasma and, maybe, inside the wall, the diamagnetic signal remains a function of β

similar to (1), only with a simple geometrical coefficient (22).

5. Diamagnetic signal and Shafranov shift

Dependence of the diamagnetic signal on the Shafranov shift was demonstrated analytically
in [16] and briefly discussed in [34]. This can be illustrated by a simple formula:

δ�pl ≡ 1

2π

∫
plasma

F − Fe

r2
dV , (24)

where the plasma shape deformation is disregarded. This formula, approximate for stellarators
and precise for tokamaks, comes from the definition

�pl = 1

2π

∫
plasma

B · ∇ζ dV (25)

of the total toroidal magnetic flux through the plasma column and the conventional expression
Bt = F∇ζ for the toroidal magnetic field. In (25) the integration is performed over the plasma
volume, ζ is the geometrical toroidal angle in the cylindrical coordinates r, ζ, z related to the
main axis and Fe is F at the plasma boundary. The region near the magnetic axis, where
the difference F − Fe must be maximal, gives smaller contribution into (24) when the axis is
shifted to larger radius r , which is the effect we discuss here.

The calculation for a current-free equilibrium plasma with Fe the same at t and t0 finally
gives [16]

δ�pl = −1 − δSh

2πFe

∫
plasma

p dV , (26)

where δSh is a quantity related to the Shafranov shift. It can be estimated as [16]

δSh = C
b

R

�ax

b
, (27)

where �ax is the shift of the magnetic axis, b is the minor radius of the plasma, R is its major
radius and C is the constant of order unity depending on the pressure distribution.

With (26) equation (1) should be modified to the form (BJ = 0 here)

β = − 2

1 − δSh

��

�pl
. (28)

It is clear that δSh is a measure of inaccuracy in determining β when the Shafranov shift is
ignored. For LHD parameters [9] b = 0.6 m, R = 3.6 m and �ax/b < 0.5 equation (27)

7
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gives δSh < 0.1, which is small even for very large �ax. This justifies the use of the cylindrical
formulae like (1) instead of the toroidal results. Equations (26) and (28) show that disregarding
the Shafranov shift in the diamagnetic measurements results in a slightly underestimated β.

6. Plasma global shift and diamagnetic signal

In tokamaks and stellarators the β rise leads also to the outward shift of the plasma as a whole,
which can be called the global shift �b. It can be affected by the external vertical field B⊥ so
that �b = �β + �⊥, where �β is the pressure-induced shift at B⊥ = 0, and �⊥ is due to B⊥.
In tokamaks the shift �b is dynamically suppressed by the equilibrium control systems [8, 28].
In stellarators such a control is not vitally important, though theory predicted [35], experiments
proved [3] and calculations confirmed [17] that it can considerably facilitate high-β operation.

Estimates [32, 36, 37] for conventional stellarators show that the pressure-induced outward
shift �β of the plasma column must be fairly large at high β:

β

2β0
eq

� �β

b
� β0

2β0
eq

. (29)

Here β0
eq = µ2

bb/R, µb is the rotational transform at the plasma edge, b is the averaged minor
radius of the plasma, R is the major radius, B0 the toroidal magnetic field at r = R and
β0 = 2p(0)/B2

0 is the local β value at the magnetic axis.
For LHD with µb ≈ 1 and b/R ≈ 0.15 we have β0

eq = 0.15, and the lower bound in (29)
is 0.1 for β = 3%, which corresponds to �β larger than 6 cm. Note that β = 5% has already
been achieved in LHD [14, 15], which means shift �β larger than 10 cm. An outward shift
of the same order was indeed experimentally found in LHD and numerically reproduced [18].
Note that LHD is a flexible device allowing operation with the axis position Rax of the vacuum
configuration varying from 3.4 to 4.1 m [14]. Inward and outward shifts in this range can
essentially reduce or increase the LHD configuration sensitivity to β [38]. Then smaller or
larger �β are possible than implied by (29), which is an estimate.

The global shift �b can be partially suppressed by the field B⊥ generated due to the eddy
currents in external conductors. For the plasma surrounded with an ideal wall of radius ac this
results in [37]

�b = �β(1 − b2/a2
c ). (30)

For LHD, a rough estimate is b/ac = 0.6/0.9 [39], so that �b > �β/2 which, as explained
above, can be several centimetres. Note that �b of order 5–6 cm has been found in [18].

When the plasma is globally shifted outwards, it moves from a stronger to a weaker
toroidal field. Then, in addition to the effects described by (7), the combined effect of the
plasma boundary deformation and 1/r dependence of the vacuum toroidal field should be
taken into account.

In the axially symmetric toroidal geometry, which can be considered for illustrations and
first estimates, the flux in the plasma-loop gap is given by

�gap ≡
∫

gap
B · dSg = 1

2π

∫
p−g

B · ∇ζ dV = Fe

2π

∫
p−g

dV

r2
, (31)

where p − g means the volume between the plasma and (axisymmetric) toroidal surface with
the diamagnetic loop in the cross-section ζ = const. Using the standard formula

d

dt

∫
V

f dV =
∫

V

∂f

∂t
dV +

∮
S

f v · dS, (32)

8
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where v is the velocity of the boundary S of this volume, and the integral with v is taken over
this boundary, we obtain

d�gap

dt
= �gap

Fe

∂Fe

∂t
+

Fe

2π

∮
v · dS

r2
. (33)

Since the diamagnetic loop does not move, this is reduced to

d�gap

dt
= �gap

Fe

∂Fe

∂t
− Fe

2π

∮
plasma

v · dSn

r2
, (34)

where Sn means the boundary surface of the plasma, oriented outwards.
Here the first term can be identified as finally generating SgapδBe in (7), which can be

applied to toroidal configurations with a proper definition of Be. The second, after time
integration, will give us −BeδSpl if the toroidal corrections are disregarded (cylindrical or
large-aspect-ratio approximation). However, strict definition in toroidal geometry,

dSpl

dt
= 1

2π

∮
plasma

v · dSn

r
, (35)

implies that this is not a complete answer. It is clear that velocity v0 = ∇U(r, z) × eζ gives
zero in (35) or δSpl = 0, but does not nullify the last term in (34). Here r, ζ, z are the same
cylindrical coordinates as introduced in the previous section, ei are the unit vectors along
proper axes. With U = −vrzer we have v0 = vrer , if vr is constant, and∮

plasma

v0 · dSn

r2
= −vr

∫
plasma

dV

r3
≈ −2π

�pl

Fe

vr

R
. (36)

With this relation we obtain from (34) a toroidal modification of (7):

δ�gap = SgapδBe − BeδSpl + �pl
δ�b

R
, (37)

where δ�b is the increment of �b, and �pl is the total toroidal flux (25) in the plasma. The
last term here describes the result of the toroidal shift of the boundary in the toroidal geometry,
while δSpl is determined by v−v0 (here, by definition, v0 gives δSpl = 0). This term is positive
for the outward shift, which is natural since with δ�b > 0 the plasma comes to a region of
weaker toroidal field, and the area with larger field covered by the loop becomes larger. This
is illustrated in figure 1 where δ�b > 0 corresponds to the evolution from the left (solid) to
the right (dashed).

In tokamaks the plasma global shift was routinely measured long ago [1, 2, 33]. In
stellarators this is also possible [4, 18, 32, 40]. Such measurements can be useful combined
with (37) and diamagnetic measurements.

In [1] it was stated that a relative error of order �/R appears when B0 in �pl = B0Spl in
(1) is a field at the centre of the vacuum vessel, but the plasma centre is shifted by �. This
was obtained as an estimate for a circular tokamak by some expansion. Our relations (34) and
(37) are more general and not related to (1) in any way. Actually these formulae are for the
flux of the vacuum field outside the plasma, while (1) describes the flux in the plasma. It is
important that, when the magnetic flux is frozen, δ�gap given by (37) will be an essential part
of the measured diamagnetic signal.

Expression (37) shows that δ�b = 6 cm in LHD configuration with R = 3.9 m will give
3% to 2δ�gap/�pl. This should be compared with β, as implied by (1). This contribution is
certainly above the level of 0.7% found in [9] as an essential quantity for proper calibration of
the diamagnetic measurements in LHD.
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Figure 1. Two positions of the plasma and the external toroidal field Be = Fe/r . Larger radial
shift of the plasma brings it to a weaker toroidal field.

This shows that the effect related to 1/r radial dependence of the toroidal field and the
pressure-induced toroidal shift of the plasma boundary, not included into the cylindrical model,
can give an unaccounted contribution to the measured diamagnetic signal comparable to the
signal itself. Note that this estimate is rather conservative. With R = 3.6 m and yet realistic
δ�b = 9 cm we obtain for the last term in (37) 2δ�gap/�b = 5%. This means 100% of the
‘cylindrical’ main term at β = 5%.

Finally, we cannot rule out the global shift of the plasma as a possible reason for large
contribution to δ�gap, if δ�b is not suppressed.

7. Plasma volume change and diamagnetic signal. Implications to LHD

The parameter δ�b introduced in (37) is a shift that preserves Spl. However, in stellarators
the plasma shifting outwards enters the region with stochastic magnetic field lines [17, 18, 29].
This leads to a noticeable change in the plasma volume, which makes δSpl a function of δ�b.
The importance of this effect for LHD was emphasized recently in [14, 18, 29]. The effect
was known long ago [31], but up to now there have been no systematic methods to precisely
describe the shape and location of the plasma boundary in helical systems [18, 29]. Here we
can only make estimates of such boundary modulation on δ� by an order of magnitude.

Equation (34) describes the dependence of �gap on arbitrary changes in the plasma
geometry, which are represented by two ‘geometrical’ terms in (37). The pressure-induced
change in plasma volume is described by −BeδSpl in (37). To complete the task, we have to
evaluate this contribution. Precise calculations for LHD could be done with (34) if the plasma
boundary change found in [18] would be transformed into local velocities v of the boundary
elements.

Such a change in Spl should be treated as a separate important element affecting the
diamagnetic measurements. The reason is that the flux conservation discussed above leads

10
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to a small increase in the plasma volume as δVpl/Vpl ≈ β/2 [21, 32], see (9) and (12), while
the results [18] show a much larger volume increase with an increase in β, up to 10%. It was
emphasized [18] that, in such cases, the difference in the plasma stored energy estimated by
the diamagnetic flux measurement and the profile measurements is up to 20%.

The above analysis shows the ways of resolving the problem. First, we can conclude
that in these cases the plasma evolution cannot be flux-conserving. This is due to the
mentioned difference (order of magnitude) in values δSpl/Spl expected from flux conservation
and observed in LHD [18]. If so, evolution of Spl should be prescribed using experimental
results from [18], if there is no reliable theory.

The definition of plasma boundary in stellarators is a disputed issue [17, 18]. For our
purposes, a natural step could be the identification of such a peripheral closed magnetic surface
which keeps �pl = const inside this surface when the plasma equilibrium is evolved. Then
the outer region can be considered as the discussed plasma-loop gap, and (37) can be used for
the estimates.

This, probably, can reconcile �Spl/Spl ≈ 0.1, equivalent to a 10% volume increase in
LHD [18], with δSpl/Spl ≈ β/2 found earlier as a measure of the cross-section change in
the flux-conserving case. In the first expression we have �Spl, most certainly, related to the
surfaces with different fluxes (a concept used in [17]), which is not δSpl for the same flux.
Also, δSpl should be calculated taking account of the toroidal effects, which, as shown in
the previous section, must be important. Finally, note that at δSpl > 0, as we expect for the
flux-conserving case and which corresponds to observations [18] (but contradicts to modelling
in [17]), the two last terms in (37) are of opposite signs. If so, some partial compensation can
occur, and diamagnetic measurements will remain sufficiently reliable, even at a 10% increase
in the plasma volume in LHD [18].

8. Conclusion

High accuracy required for measurements of the plasma stored energy and β [1–9] calls for
a better expression than (1), a more careful description of equilibrium configuration and its
evolution, and even a more detailed separation of different contributions to the measured signal
than has been done in [9]. To some extent this might compromise the method whose main
advantage was the simplicity expressed by (1). Our analysis and estimates show that, despite
the computational complications, the simplicity remains a virtue if the variations of the plasma
shape and position are properly treated with due account of the toroidal geometry and boundary
conditions.

A contribution of these geometrical effects to the measured diamagnetic signal can be,
under certain conditions, of the order of the main term, which is β in (1). This is shown,
in particular, by (21) which explains that β can be found from diamagnetic measurements
even when the magnetic flux is frozen into the plasma. This formula also explicitly shows
the dependence of the measured flux on the flux loop geometry (essentially different from the
effect discussed in [9]) and on the boundary conditions at the wall.

Our analysis confirms that, with proper treatment of the terms, equation (1) can be used
as a good basis for data analysis. However, as seen from (37), the toroidal effects, which
could not be introduced by simple modifications of the ‘cylindrical’ quantities in (1), can give
another contribution to δ� comparable to β, if δ�b is sufficiently large. This undesired part
can be eliminated by suppressing the global plasma shift, as routinely done in tokamaks. Or,
otherwise, experimental verification of this prediction can be proposed for stellarators, which
can be done by controlling the inward/outward shift of the plasma.
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The plasma shift in the inhomogeneous magnetic field, with related deformations of the
boundary, should be considered as the main threat to the accuracy of the diamagnetic evaluation
of plasma β. This is because the plasma energy is much smaller (by a factor of β) than the
energy of the confining magnetic field. Diamagnetic loops react to small redistributions of the
magnetic energy which can or cannot be directly related to the perpendicular force balance
responsible for the β term in (1). Therefore more detailed studies along the lines described
here are needed to increase the reliability of interpretation of diamagnetic measurements.

Here, for illustration, we used equation (1) which is also valid for anisotropic plasmas if β

is replaced by β⊥, representing the perpendicular pressure. It is important that the geometrical
effects related to the plasma boundary change and the toroidal effects do not depend on a
particular model of the plasma. Therefore, we can easily combine the ‘geometrical’ part of
the presented theory with any alternative approach to the plasma equilibrium.
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