The tokamak GOLEM CAAS report #3

Jaroslav Čeřovský

on behalf of the tokamak GOLEM team

3rd February 2020

Jaroslav Čeřovský (FNSPE CTU)

RE studies at GOLEM

3rd February 2020 1 / 18

Overview

Runaway electrons at GOLEM

- Basic physics of RE
- Prediction for Golem

Characterization of HXR radiation

- Experimental setup
- GOLEM and COMPASS experimental data

3 Future work

Inspiration from different tokamaks

Conclusion

Introduction to RE physics in tokamaks

• RE created in low density discharges or during disruptions

Introduction to RE physics in tokamaks

- RE created in low density discharges or during disruptions
- tokamak GOLEM: low density plasma $(n_e \approx 10^{18} \text{ m}^{-3})$ and relatively high electric field $(E \approx 1 2 \text{ V/m})$

 \rightarrow favourable conditions for RE generation

Introduction to RE physics in tokamaks

- RE created in low density discharges or during disruptions
- tokamak GOLEM: low density plasma ($n_e \approx 10^{18} {
 m m}^{-3}$) and relatively high electric field ($E \approx 1-2 {
 m V/m}$)
 - \rightarrow favourable conditions for RE generation
- various mechanisms of generation assumed
 - \rightarrow Dreicer mechanism
 - \rightarrow hot-tail mechanism
 - \rightarrow avalanche mechanism
 - \rightarrow tritium decay and Compton scattering

- RE created in low density discharges or during disruptions
- tokamak GOLEM: low density plasma ($n_e \approx 10^{18} \text{ m}^{-3}$) and relatively high electric field ($E \approx 1-2 \text{ V/m}$)
 - \rightarrow favourable conditions for RE generation
- various mechanisms of generation assumed
 - \rightarrow Dreicer mechanism
 - \rightarrow hot-tail mechanism
 - \rightarrow avalanche mechanism
 - \rightarrow tritium decay and Compton scattering
- usually unwanted phenomena in tokamaks (thread for ITER)
 → mitigation strategies: MGI, SPI, RMP

• mechanism of generation:

$$\frac{\mathrm{d}n_r}{\mathrm{d}t} = \left(\frac{\mathrm{d}n_r}{\mathrm{d}t}\right)_{Dreicer} + \left(\frac{\mathrm{d}n_r}{\mathrm{d}t}\right)_{Avalanche}$$

• avalanche time: $t_{Av} \approx 22.5 \text{ ms} \rightarrow t_{discharge} \leq t_{Av}$ \rightarrow only Dreicer mechanism is important for Golem

$$\frac{\mathrm{d}n_r}{\mathrm{d}t} = Cn_e\nu_{th}\varepsilon^{-3(1+Z_{eff}/16)}\exp(-\frac{1}{4\epsilon} - \sqrt{\frac{1+Z_{eff}}{\varepsilon}})$$
(2)

• critical energy: $W_c = 1.76 \text{ keV}$

(1)

GOLEM vs. RE

Energy limits of RE:

$\bullet\,$ high energy of RE $\rightarrow\,$ shift of trajectory to LFS

• time limit: $W_{max}^{time} \approx 2 - 4 \text{ MeV}$

Jaroslav Čeřovský (FNSPE CTU)

- HXR radiation caused by RE characterized by two different approaches
- \rightarrow monitoring by set of dosimeters
- \rightarrow usage of scintillation detectors

Dosimeters monitoring

< 4[™] >

Dosimeters monitoring

- dose measured only on dosimeters near Mo limiter
- asymmetry in radiation pattern observed

Image: A matrix and a matrix

Jaroslav Čeřovský (FNSPE CTU)

RE studies at GOLEM

▶ < ∃ >

Experimental setup - GOLEM

- 2x Nal(TI) scintillation detectors
- different shielding variants tested

- fast data acquisition system used (PXI NI)
 → up to 200 MHz, input impedance: 50 Ohm
- $\bullet\,$ number of pile-up events observed $\rightarrow\,$ usage of colimator and shielding

Measured data - analysis example

Experimental setup - COMPASS

- 2x NaI(TI) installed at the COMPASS
- placed inside led bunker or behind wall

3rd February 2020 12 / 1

• usually energy of HXR measured up to 8 MeV

Jaroslav Čeřovský (FNSPE CTU)

RE studies at GOLEM

 \bullet "proper" RE discharge \rightarrow early saturation

Jaroslav Čeřovský (FNSPE CTU)

RE studies at GOLEM

3rd February 2020 14 / 18

- useful for determination of seed of runaway electrons in discharge
- estimation of RE energies
 - \rightarrow roughly 8 ${\rm MeV}$ after 100 ${\rm ms}$ of discharge
- possible comparison with spectrometer made in Milan (campaign January 2020)

IR-TM1

- HXR spectroscopy and comparison with simplified modeling of RE
- usage of biasing probe/limiter for controlling of RE

ISSTOK

measurements with Cherenkov detector (unsuccessful negotiation in past)

CASTOR

• HXR spectroscopy and comparison of different regimes of tokamak discharge

• continuation with HXR spectroscopy

 \rightarrow better understanding of HXR generation and shielding against HXR radiation (modelling with FLUKA?)

 \rightarrow building stand for scintillation detector and proper shielding with possibility of collimation of HXR radiation

- broader involvement of different experimental techniques
 → Timepix detectors, scintillation detectors with different crystals
- installation of detectors from GOLEM at COMPASS and measurements during last RE campaign
- development of automatic routines for calibration and pile up detection

- characterization of HXR radiation at two different tokamaks with similar diagnostics setting
- current diagnostic setting useful only in low runaway populated discharges and in the beginning of discharge at COMPASS
- interpretation of GOLEM data is challenging \rightarrow improvements in diagnostic setup e.g. shielding, . . .