Overview of the SCR-1 Stellarator

<u>R. Solano-Piedra¹</u>, V.I. Vargas¹, A. Köhn², F. Coto-Vílchez¹, J. Sanchez-Castro¹, D. López- Rodríguez¹, M.A. Rojas-Quesada¹, J. Mora¹ and J. Asenjo¹.

¹Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, Costa Rica.
²Max Planck Institute for Plasma Physics (IPP), Garching, Germany.

March 31, 2017

TEC Tecnológico de Costa Rica

Outlines

Motivation

- SCR-1 Parameters
- Main Plasma Parameters by VMEC
- Magnetic Field
- Modular Coils

Peripherical systems and support structure

- Support Structure
- ECR Heating System

Full Wave Simulations

- Electron density and Magnetic Field on the Magnetic Flux Surfaces
- Variation of the wave Electric Field of the Incident Microwave

Magnetic Mapping Experiment

- Diagnostics
- Langmuir Probe
- Optical Spectrometer
- Microwave Heterodyne Interferometer

Summary and Conclusions

Next steps

Motivation

- Train human resources in fusion technology.
- Collaborate with international research centers in the pursuit of nuclear fusion energy.
- Strengthen the participation of Latin America in fusion research.
- Identify problems related to the design and construction of small modular stellarators

 $R. \ Solano-Piedra^1, \ V.I. \ Vargas^1, \ A. \ K \quad Overview \ of \ the \ SCR-1 \ Stellarator$

SCR-1 parameters

- **2-field period** modular stellarator.
- Aspect ratio = 6.2
- Major radius R = 247.7 mm
- Low shear configuration
- $\iota_0 = 0.312$ and $\iota_a = 0.264$
- 6061-T6 aluminium vacuum vessel
- ECRH power 2.45 GHz, second harmonic (B = 43.8 mT), $\langle B \rangle = 41.99 \text{ mT}.$

SCR-1 parameters

- Two magnetrons with a maximum output power of 2 kW and 3 kW.
- 12 modular coils with 6 turns each.
- 725 A per turn, providing a total toroidal field (TF) current of 4.35 kA – turn per coil.
- A bank of cell batteries of 120 V.
- Plasma pulse between 4 s to 10 s.

Schematic upper view of SCR-1 Stellarator

$SCR-1 \ plasma \ parameters$

- Minor plasma radius = 39.95 mm.
- Estimated electron temperature = 10 eV.
- Electron density = $5 \times 10^{16} \text{ m}^{-3}$
- Estimated energy confinement time = $5.70 \times 10^{-4} \text{ ms}(\text{of ISS04} [\text{Ref.1}]).$
- Plasma density cut-off value of $7.45 \times 10^{16} \text{ m}^{-3}.$
- Plasma volume = $7.8 \, \text{I}(0.0078 \, \text{m}^3)$

Rotational Transform Profile using VMEC code

Rotational transform profile for SCR-1 stellarator at 0° toroidal angle

Magnetic Field Calculations using VMEC code

Magnetic Field Calculations using VMEC code

Magnetic Flux Surfaces at 0°

Magnetic Flux Surfaces at 90°

$Modular \ Coils$

Modular Coils

Upper view of SCR-1

Modular Coils

Simulation of temperature comparison between different wire configurations.[Ref 2]

Simulation of voltage-drop vs time for the battery bank of the SCR-1. [Ref. 2]

[2]Vargas, V. I., et al. 2013. "Engineering issues to the stellerator of Costa Rica 1". 1-6.

Support Structure

Set of equipments attached to the SCR-1 stellarator

ECR Heating System

ECR Heating System

Simulations of electric field norm

Antenna for improving the plasma heating

Full wave simulations using IPF-FDMC code

Full wave simulations using IPF-FDMC code

IPF-FDMC Full wave code

Simulations of the rms-value of the wave electric field in O- mode configuration

- O-X-B conversion
- $\bullet\,$ Angle of the antenna in the toroidal direction $=40^\circ\,$

Magnetic mapping experiment

Magnetic mapping experiment methods

$Electron \ Gun \ prototypes$

First e-gun tested

Final e-gun

$Electron \ gun \ mounted$

Results of the magnetic mapping experiment

Results of the magnetic mapping experiment

Mesh

Oscillating rod

"Cuchillo de mantequilla"

Langmuir Probe

Langmuir probe set and different parts

Langmuir probe at SCR-1 Stellarator

Langmuir probe at SCR-1

Langmuir probe results

- Electron temperature 5.29 eV.
- Electron density $5 \times 10^{14} \text{ m}^{-3}$.
- Nominal power 784 W.

Optical Spectrometer

Focal Length	550 mm
Aperture	f/6.4
Spectral Range	$150 \ { m to} \ 1500 \ { m nm}$ with $1200 \ { m g/mm}$
Resolution with exit slit and PMT	0.025 nm
Wavelength accuracy	\pm 0.20 nm
Repeatibility	± 0.075 nm
Spectral Dispersion	1.34 nm/mm

iHR550 optical spectrometer

Colimator and focusing lens

Microwave Heterodyne Interferometer

Microwave heterodyne interferometer in SCR-1 stellarator

Microwave Heterodyne Interferometer

Electric field simulation of the incident wave and CF to KF adapter and feedthroughs

Summary and Conclusions

- A small modular stellarator was designed, constructed and implemented at the Instituto Tecnológico de Costa Rica.
- The main goal is to provide a tool to carry out engineering and physics research of small-size confinement magnetic devices.
- Results of POINCARE and BSOLCTRA codes are in concordance with each other.
- Microwave scenario at 0° toroidal angle shows a variation of the wave electrical field that can be significant for the conversion to the Electric Bernstein Waves. Nevertheless, we have to explore more scenarios.
- The electron temperature and density for the plasma in SCR-1 is approximately 5 eV and 10^{14} m⁻³ for a nominal power of 732 W.
- The magnetic mapping experiment and the magnetic flux surface at 0° toroidal angle, calculated by Poincare and BSOLCTRA are similar with the magnetic mapping methods.

Next steps

- To measure the electron density and temperature profiles in the SCR-1 Stellarator.
- To simulate scenarios for an Electron Bernstein Heating System in the SCR-1 Stellarator (experience of TJ-K) with the IPF-FDMC full wave code taking into account the geometry of the vacuum vessel.
- To start the design of SCR-2 Stellarator using the STELLE configuration and VMEC for obtaining the MHD equilibrium.

