INSTITUTE OF PLASMA PHYSICS OF THE CZECH ACADEMY OF SCIENCES

TOKAMAK GOLEM: HISTORY, PRESENCE, ACHIEVEMENTS

P. MACHA^{1,2}

¹ Institute of Plasma Physics of the CAS, U Slovanky 2525/1a, Prague 8, Czechia ² Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague, Czechia

OUTLINE

History

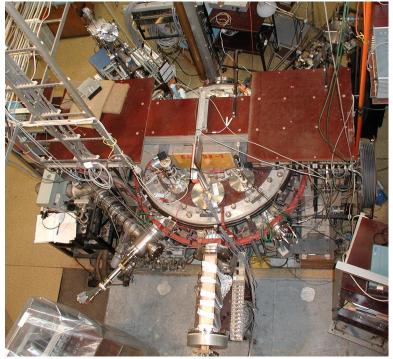
- TM-1
- CASTOR
- GOLEM

GOLEM in current days

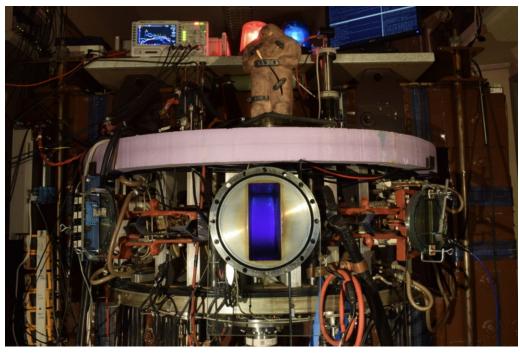
- Basic overview
- Diagnostic
- Database

GOLEM achievements

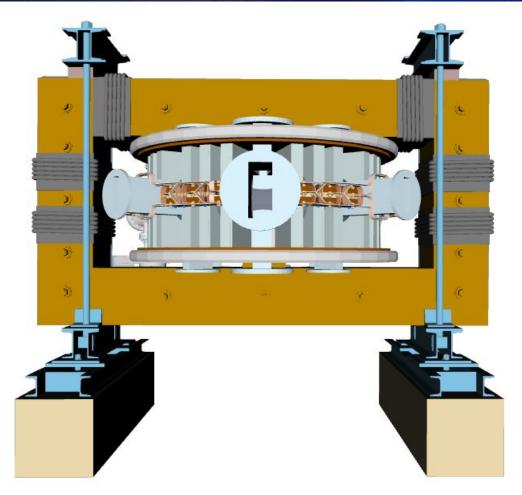
- Interesting papers
- Student works


- Constructed in 1960 in the Soviet Union at the Kurchatov Institute in Moscow.
- It was the third tokamak constructed in history (after T-1 and T-2 tokamaks).
- Named as TM-1 (tokamak malyj a small tokamak).
- One of the first functional experimental **small-size** tokamak designed for controlled thermonuclear fusion research.
- In russia served for **radiofrequency wave interaction studies**.
- Influential group of theorists in czech republic studying RF current drive => TM-1 was donated to our Institute in 1975, operating under name TM-1 MH (microwave heating).
- The primary goal after moved to our institute was to study microwave heating of plasma.

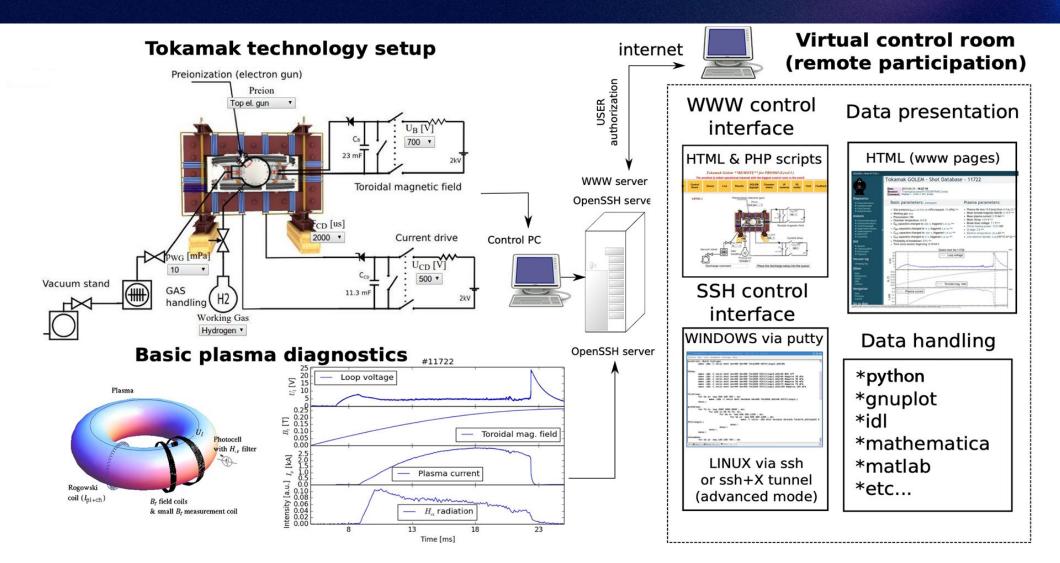
- TM-1 MH was completely refurbished (new vacuum vessel, new diagnostics ports, feedback system, etc) and renamed to CASTOR (Czech Academy of Sciences TORus) in 1984.
- Main research focused on edge turbulence and lower hybrid current drive.
- The research was undertaken until the end of 2006, when CASTOR was replaced by COMPASS tokamak.



Major radius	R = 0.4 m a = 0.085 m B _t = 1.5 T		
Minor radius			
Toroidal magnetic field			
Plasma current	l _p < 25 kA		
Line averaged density	n _e = (0.2-3.0)x10 ¹⁹ m ⁻³		
Electron temperature	T _e < 200 eV t < 50 ms		
Discharge duration			


- **CASTOR** was moved to Technical University in Prague in 2007.
- The origin of the name **GOLEM** is because of the near distance to the old Prague Jewish cemetery, where Rabi Loew (Golem builder) is buried.
- Servers both as the educational and scientific device.

Major radius	R = 0.4 m		
Minor radius	a = 0.085 m B _t = 0.5 T		
Toroidal magnetic field			
Plasma current	I _p < 8 kA		
Line averaged density	n _e = (0.2-3.0)x10 ¹⁹ m ⁻³		
Electron temperature	T _e < 100 eV		
Discharge duration	t < 25 ms		


TOKAMAK GOLEM

- The oldest still operating tokamak in the world.
- Circular plasma cross-section
- Partial moon-shaped poloidal limiter
- Non-axisymmetric transformer iron core for current drive.
- Various working gases (H, D, He, Ar).
- Serves for both educational and scientific purposes:
 - Golem activities ratio: 20% Research, 80% Education
- Topic of many Bachelor a Diploma thesis.
- Main focus:
 - Runaway studies
 - Plasma edge studies using advanced probes

Realistic CAD model of tokamak GOLEM

GOLEM BASIC DIAGRAM

GOLEM REMOTE CONTROL

- GOLEM is unique because of its possibility of fully remote control.
- Control system is **based** on **Linux bash** command language.
- Two options available:
 - Use user-friendly web GUI (limited options)
 - SSH connection (full control over tokamak)
- This allows fully remote experiments (remote trainings, etc).

./Dirigent.sh --discharge --operation.discharge "style='standard',vacuum_shot='44738'" --infrastructure.bt_ecd

- "U_Bt=950,t_Bt=0,O_Bt='CW',U_cd=650,t_cd=0,O_cd='CW'" --infrastructure.preionization
- "S_device='HotCathode',SW_main='on',U_heater=100,U_accel=100" --infrastructure.workinggas
- "S_mode='U_v',S_gas='He',p_H=15,U_v=44.0" --infrastructure.positionstabilization

"main_switch='on',radial_switch='on',radial_waveform='1000,0;2000,-5;5000,0;6000,-20;30000,0',vertical_switch='on',vertical_waveform=' 1000,0;2000,-5;7000,-10;8000,-20;30000,0'" --diagnostics.langballpenprobe

"r_lp_tip='46',S_mode_lp='isat',R_lp_div_osc='10e3',R_lp_div_nosc='1e6',R_bpp_div_osc='10e3',R_bpp_div_nosc='1e6',U_lp='-90',R_lp_isat ='47'" --comment "He Isat scan r=46 mm"

GOLEM REMOTE CONTROL

- In total, there are just few inputs:
 - Mandatory: calling main script, setting plasma current and toroidal magnetic field, preionization setup, working gas type and pressure, plasma stabilization, discharge comment.
 - **Optional: other diagnostics** (combined probe head, but can be any).

./Dirigent.sh --discharge --operation.discharge "style='standard',vacuum_shot='44738'"

--infrastructure.bt_ecd "U_Bt=950,t_Bt=0,O_Bt='CW',U_cd=650,t_cd=0,O_cd='CW'"

--infrastructure.preionization "S_device='HotCathode',SW_main='on',U_heater=100,U_accel=100"

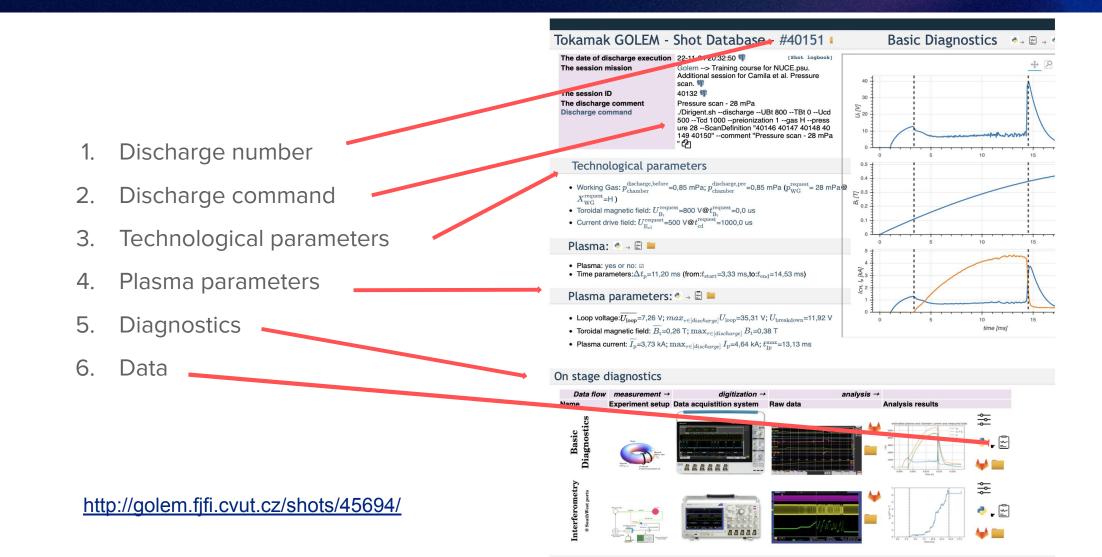
```
--infrastructure.workinggas "S_mode='U_v',S_gas='He',p_H=15,U_v=44.0"
```

```
--infrastructure.positionstabilization
```

"main_switch='on',radial_switch='on',radial_waveform='1000,0;2000,-5;5000,0;6000,-20;30000,0',vertical_switch='on',vertical_waveform=' 1000,0;2000,-5;7000,-10;8000,-20;30000,0'"

--diagnostics.langballpenprobe

"r_lp_tip='46',S_mode_lp='isat',R_lp_div_osc='10e3',R_lp_div_nosc='1e6',R_bpp_div_osc='10e3',R_bpp_div_nosc='1e6',U_lp='-90',R_lp_isat ='47'"


--comment "He Isat scan r=46 mm"

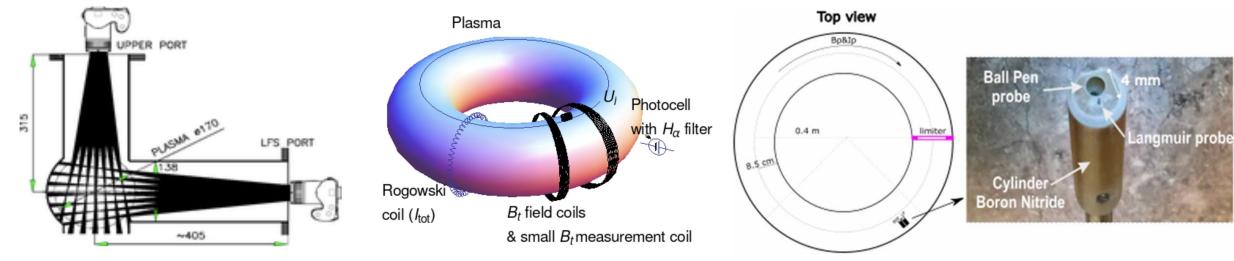
GOLEM REMOTE CONTROL

EM remote Introduction Control Room Live Results	Preionization (infrastructure.preionization)		
Use Session Master Discharge	The neutral working gas must be first ionized in order to break down into a plasma. Using the electron gun will locally ionize the gas. Without any ionization, no plasma can form.		
Basic Diacharge Parameters (infrastructure.bt_ecd) Hide Descriptions	Preionization device: S_device = HotCathode (Electron gun) U_heater = 100 V U_accel = 80 V		
Toroidal Field Capacitor Voltage on the capacitors U _B , to be discharged into the toroidal field	Plazma Positon Stabilization (infrastructure.positionstabilization)		
Toroidal magnetic field coils. The higher the voltage, the larger the magnetic field confining the plasma. Current drive Current Drive Capacitor Voltage on the capacitors U _{cd} to be discharged into the primary transformer winding.	Stabilization master switch: main_switch = on off Radial stabilization switch: radial_switch = on off Radial Waveform: radial_waveform = Vertical Stabilization switch: vertical_switch = on off 1000,0;2000,-5;5000,-10;9000,-2 Vertical Waveform: vertical_waveform = 1000,0;2000,-5;7000,-10;8000,-2		
The higher the voltage, the larger the electric field creating and heating the plasma. The electric field capacitors are discharged after a configurable delay with respect to the magnetic field capacitors.	Double Rake Probe (diagnostics.doublerakeprobe) r_first_tip = 0 mm X_mod = 11111111111111111111111111111111111		
Toroidal Field Capacitor: U_Bt = 500 V Torodial Field Delay: t_Bt = 0 us	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12		
Current Drive Capacitor: U_cd = 350 V Current Drive Delay: t_cd = 1000 us	Rake Probe (diagnostics.rakeprobe)		
Toroidal Field Orientation: O_Bt = CW ACW Current Orientaiton: O_cd = CW ACW	r_First_Tip = 100 mm phi_First_Tip = 0 deg		
Working Gas (infrastructure.workinggas) Set the pressure and type of the working gas from which the plasma is formed. Pressure must be high	X_mod = 111111111111 I_SilverBox = 12 123456789101112 phi_manipulator = 0 deg r_manipulator = 60 mm phi_manipulator = 0 deg		
enough for plasma to form, but low enough for gas breakdown to occur.	(comment)		
S_mode = U_V p_wg vacuum Gas Type: S_gas = H He	comment =		
Gas Pressure: p_H = 10 mPa U_v = 22.0 V	Copy command to clipboard Submit Discharge		

26/08/2024

SHOT HOMEPAGE

SHOT HOMEPAGE


Index of /shotdir/44005/Diagnostics/BasicDiagnostics/Results

	Name	Last modified	Size	Description
	Parent Directory		1	
Ð	Bt.csv	2024-03-07 12:12	2 785K	
?	Bt_max	2024-03-07 12:12	2 5	
?	Bt_mean	2024-03-07 12:12	2 5	
Ð	Ich.csv	2024-03-07 12:12	2 747K	
?	Ich_max	2024-03-07 12:12	2 5	
?	Ich_mean	2024-03-07 12:12	2 5	
Ð	Ip.csv	2024-03-07 12:12	2 775 <mark>k</mark>	<i>3</i>
?	Ip_max	2024-03-07 12:12	2 5	
?	Ip_mean	2024-03-07 12:12	2 5	
Ð	U_loop.csv	2024-03-07 12:12	2 565K	-
?	U_loop_max	2024-03-07 12:12	2 6	
?	U_loop_mean	2024- <mark>03-</mark> 07 12:1	2 5	

Apache/2.4.59 (Debian) Server at golem.fjfi.cvut.cz Port 80

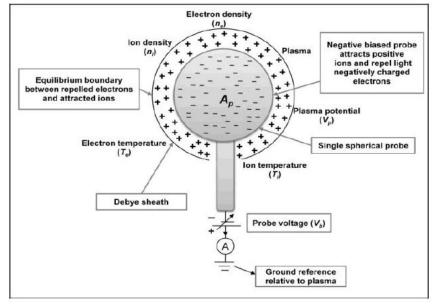
BASIC DIAGNOSTICS

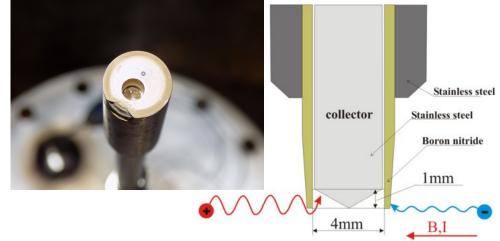
- Tokamak GOLEM is equipped with several diagnostics:
 - Basic diagnostics for main plasma parameters measurements (plasma current, loop voltage, fast cameras, ...)
 - Interferometry for line-averaged density.
 - Fast cameras for global plasma view and tomography.
 - Magnetic coils (MHD ring equipped with 16 Mirnov coils).
 - **RE diagnostics** (scintillation detectors, strip detector, Timepix).
 - **Spectroscopy** (mainly compact spectrometers both wide wavelength range and focused on specific lines).
 - VARIOUS ELECTRIC PROBES: used for electron temperature, plasma potential, and ion saturation current measurements.

ELECTRIC PROBES I

• Langmuir probe:

- Simple conductive wire inserted into plasma.
- Charge particles are attracted to the collector.
- \circ Measures floating potential **U**_{fl} / ion saturation current I_{sat}


• Ball-pen probe:

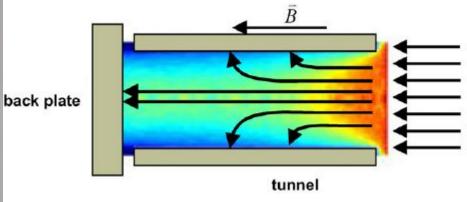

- Modified electric probe to measure plasma potential ϕ directly.
- Electrons with smaller gyro radius are physically shielded => ion and electron currents are balanced [<u>https://en.wikipedia.org/wiki/Ball-pen_probe</u>] and factor R=0

$$lpha = ln\left(rac{A_e j_e^{sat}}{A_i j_i^{sat}}
ight) = ln(R)$$

 Combined with Langmuir probe => fast electron temperature T_e measurements based on:

$T_e = (\phi - U_{fl})/\alpha$

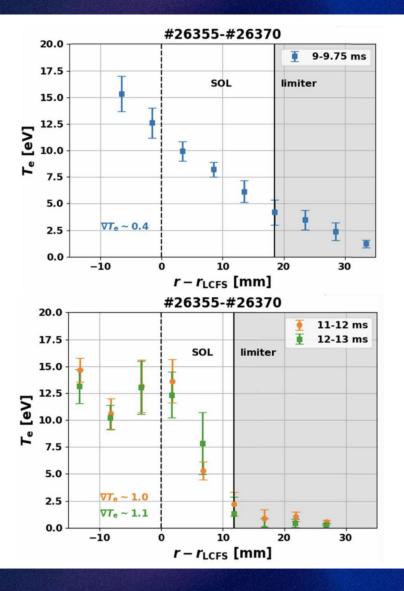
:::IPP


ELECTRIC PROBES II

- Double rake probe:
 - An array of Langmuir probes
 - Allows to measure radial profile of U_{fl} / I_{sat} within single discharge

• Tunnel probe:

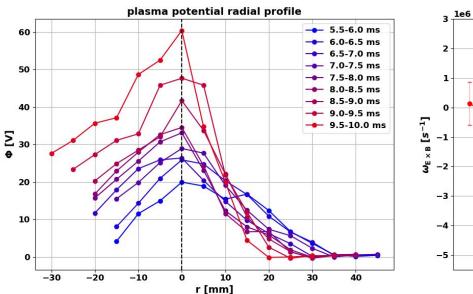
- Modified electric probe used for I_{sat} measurements.
- Consists of tunnel and back-plate.
- The electric field is located in the vicinity => no sheath expansion.
- Plasma rotation / Mach number measurements.

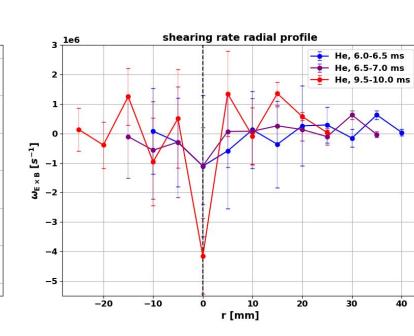

TRANSPORT BARRIER ANALYSIS

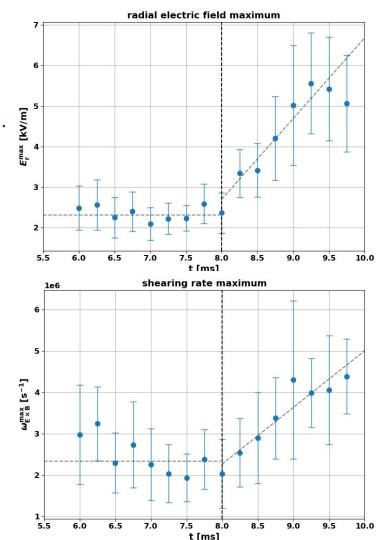
LETTER • OPEN ACCESS

Spontaneous formation of a transport barrier in helium plasma in a tokamak with circular configuration

P. Macha^{1,2,5} (D), J. Adamek² (D), J. Seidl² (D), J. Stockel^{2,4}, V. Svoboda¹ (D), G. Van Oost³ (D), L. Lobko¹ (D) and J. Krbec² (D) Published 4 September 2023 • (© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA <u>Nuclear Fusion</u>, <u>Volume 63</u>, <u>Number 10</u> Citation P. Macha *et al* 2023 *Nucl. Fusion* 63 104003 DOI 10.1088/1741-4326/acf1af

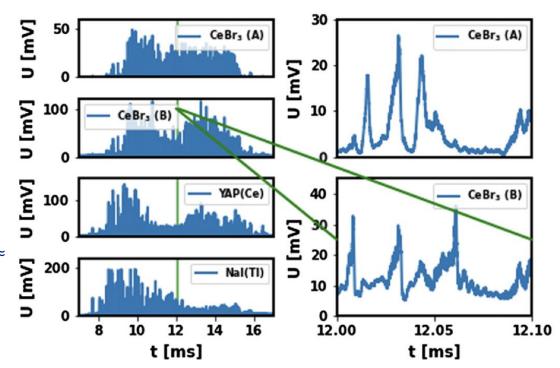

- Steep gradient of electron temperature was observed.
- Gradually increasing radial electric field and velocity shear.
- P_{IH} power satisfied by L-H transition scaling laws.
- => spontaneous formation of a transport barrier in helium plasma on GOLEM.




:::IPP

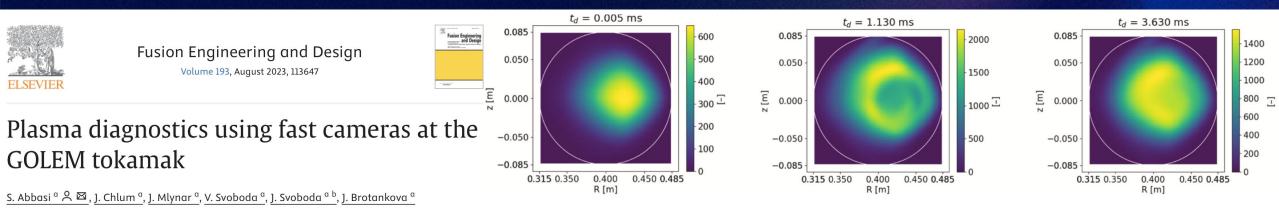
WHAT WAS ALREADY OBSERVED II

- We observed formation of strong radial electric field and shearing rate.
- All of this was formed spontaneously under specific discharge conditions (high ohmic heating and relatively low plasma density).
- The mechanism of the process is however still not known and could be explained.
- Following experiments as one of the SUMTRAIC task.

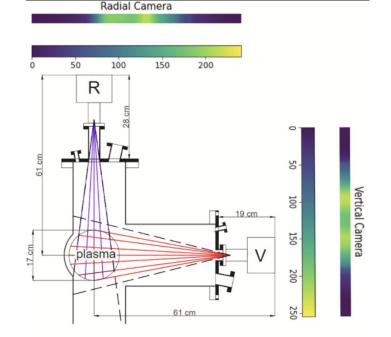

RUNAWAY ELECTRONS RESULTS

Journal of Instrumentation

PAPER Progress in HXR diagnostics at GOLEM and COMPASS tokamaks


J. Cerovsky^{3,1,2}, O. Ficker^{1,2}, V. Svoboda², E. Macusova¹, J. Mlynar^{1,2}, J. Caloud^{1,2}, V. Weinzettl¹, M. Hron¹ and COMPASS team and EUROfusion MST1 team⁴ Published 10 January 2022 • © 2022 IOP Publishing Ltd and Sissa Medialab Journal of Instrumentation, Volume 17, January 2022 Citation J. Cerovsky *et al* 2022 *JINST* **17** C01033 DOI 10.1088/1748-0221/17/01/C01033

- Low plasma density ($n_e \approx 1018 \text{ m}-3$), high toroidal electric field ($E_T \approx 4-7 \text{ V/m}$) => generation of runaway electrons.
- Several scintillation detectors (NaI(TI),YAP(Ce), and CeBr3) and Timepix + strip detectors were used on GOLEM.
- Acquired signals suffer from large number of multiple pile-up events.
- The development of collimator or additional shielding is necessary for future successful operation.



Evolution of signals from scintillation detectors during discharge #36649 at GOLEM tokamak.

TOMOGRAPHY

- The tomographic inversions were performed on line integrated signal acquired by the two visible cameras.
- The **Minimum Fisher Regularization (MFR) algorithm** implementation from open source python package Tomotok **was used**.
- The results showed the expected hollow emissivity profile.
- There are however still several drawbacks, which needs to be solved (further validation of implementation, enhancing cameras FOV, camera relative calibration).

OTHER INTERESTING PAPERS

- M Dimitrova et al. "Plasma properties in the vicinity of the last closed flux surface in hydrogen and helium fusion plasma discharges". In: Plasma Physics and Controlled Fusion 66.7 (2024), p. 075022. doi: 10.1088/1361-6587/ad5377. url: https://dx.doi.org/ 10.1088/1361-6587/ad5377.
- G. Sarancha et al. "Remote Plasma Physics Research and Teaching by Example of Turbulence Study at the University-Scale Tokamak GOLEM". In: Fusion Science and Technology 79.4 (2023), pp. 432–445. doi: 10.1080/15361055.2022.2148842. eprint: https://doi.org/10.1080/15361055.2022.2148842. url: https://doi.org/10.1080/15361055.2022.2148842.
- S. Kulkov et al. "Detection of runaway electrons at the COMPASS tokamak using a Timepix3-based semiconductor detector". In: Journal of Instrumentation 17.02 (Feb. 2022), P02030. doi: 10.1088/1748-0221/17/02/p02030. url: https://doi.org/10. 1088/1748-0221/17/02/p02030.
- 4. G Sarancha et al. "Magnetic turbulence and long-range correlation studies in the Golem tokamak". In: Journal of Physics: Conference Series 2055.1 (Oct. 2021), p. 012003. doi: 10.1088/1742-6596/2055/1/012003. url: https://doi.org/10.1088/1742-6596/2055/1/012003.
- G.A. Sarancha et al. "Hydrogen and helium discharges in the Golem tokamak". In: Problems Of Atomic Science And Technology, Ser. Thermonuclear Fusion 4 (2021), pp. 92–110. doi: 10.21517/0202-3822-2021-44-4-92-110. url: https://doi.org/10. 21517/0202-3822-2021-44-4-92-110.
- 6. J. Stockel et al. "Operational Domain in Hydrogen Plasmas on the Golem Tokamak". In: Journal of Fusion Energy 38 (Mar. 2019), pp. 253–261. issn: 1572-9591. doi: 10.1007/s10894-019-00215-7.
- 7. O. Grover et al. "Remote operation of the Golem tokamak for Fusion Education". In: Fusion Engineering and Design 112 (2016), pp. 1038–1044. issn: 0920-3796. doi: 10.1016/j.fusengdes.2016.05.009.
- 8. And many many other papers

STUDENTS THESIS

Diploma thesis:

- 1. S. Malec: Compton camera for detection of hard X-rays produced on the Golem tokamak
- 2. M. Tunkl: Development of a new runaway electron diagnostics method based on strip semiconductor detectors
- 3. D. Cipciar: Ion and electron temperature study in the edge plasma of the tokamak device
- 4. P. Macha: Edge plasma studies in tokamaks by the mean of advanced electric probes.
- 5. B. Leitl: Tomografická rekonstrukce profilu vyzařování plazmatu na tokamaku Golem
- 6. J. Kocman: Řízení polohy plazmatického prstence na tokamaku Golem
- 7. L. Matěna: Microwave interferometry on the tokamak Golem
- 8. Ondřej Ficker: Generation, losses and detection of runaway electrons in tokamaks
- 9. T. Markovič: Measurements of magnetic fields on the tokamak Golem

Bachelor thesis:

- 1. Jan Buryanec: Stabilizace proudu plazmatem na tokamaku Golem
- 2. J. Chlum: Implementation of **tomographic inversion** on the Golem tokamak
- 3. J. Malinak: Electron temperature measurements using rail probe on the tokamak Golem

Highschool works:

- 1. M. Pokorný: Měření a simulace polohy plazmatu na tokamaku GOLEM
- 2. A. Socha: Poloha zóny vytváření turbulentních struktur v okrajovém plazmatu tokamaku GOLEM
- 3. D. Kropáčková: Stabilizace plazmatu na tokamaku GOLEM

- Tokamak GOLEM, build as TM-1 in russia, placed at IPP as CASTOR, now operating at CTU, is the oldest still operating tokamak in the world.
- Offers full remote control and data access.
- The focus is mostly on edge plasma studies and runaway electrons.
- Its main mission is education (80%) and science (20%).
 - Producing future fusion specialists every year.
 - Still capable of producing current fusion relevant research.
- Equipped with several basic and advanced diagnostic still offers opportunities for interesting work.
- 2 topics of SUMTRAIC 2024 focused on GOLEM.

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

