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Definitions

number of none ionized gas particles

net positive and negative charge

interchangeably

+ Plasma - partially ionized gas containing an equal number
of positive and negative charges, as well as some other

* Glow discharge - globally neutral, but contains regions of

* Most thin film processes utilize glow discharges, but
“plasmas” and “glow discharges” are often used

I
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 Plasma Density (n) — number of
species/cm3
~ 107102

— Typical glow discharges and arcs have an
electron and ion density ~ 108 — 1014
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Before application of the potential, gas molecules are electrically neutral and
the gas at room temperature will contain very few if any charged particles.
Occasionally however, a free electron may be released from a molecule by the
interaction of, for example, a cosmic ray or other natural radiation, a photon,
or a random high energy collision with another particle.
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DC Glow Discharge

When a large voltage is applied between the electrodes, say 100 V/cm, any
free electrons which may be present are rapidly accelerated toward the anode.
They quickly attain high velocity (kinetic energy) because THEY HAVE
SUCH LOW MASS. Since kinetic energy can be related to temperature, the
electrons are “hot” - they achieve extremely high temperatures because of
their low mass, in an environment of heavy, slow-moving “cold” gas
molecules.
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DC Glow Discharge

Electrons begin to collide with gas molecules, and the collisions can be either
elastic or inelastic.

— Elastic collisions deplete very little of the electron’s energy and do not significantly
influence the molecules because of the great mass difference between electrons and
molecules: Mass of electron =9.11 e-31 kg, Mass of Argon = 6.64¢20 kg.

— Inelastic collisions excite the molecules of gas or ionize them by completely removing
an electron. (The excitation - relaxation processes are responsible for the glow)
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Ionization and Plasma Current

; exp(ad)
“l1-7,(expad —1)]
where

i= Townsend Equation

a =Townsend ionization coefficient
7. = Townsend secondary - electron coefficient
d =distance between electrodes

1, =initial current
L (-7
o =—exp| ——
A qEA
V., = ionization potential
q = electron charge

E =electric field

A =mean free path

[
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Townsend Ionization Coefficient

‘—alpha (d=100mm, Vi=15eV, E=100V/10mm) = E=500/10mm ——Vi =20 Vi=10 1/lambda ‘
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The probability per unit length of ionization occurring during an Electron-gas collision.
Increase Field, decrease lonization Potential you will increase a.. At low pressure o
approaches the mean Ifree path.
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 Other electron/particleinelastic events

Dissociation/

_ inelastic __ .
¢ (100eV) + AB === e (<100eV) + A+ BHe pragmentation

Dissociative

e (100eV) + AB 1n€lastiQ o 100ev) + A"+ B +2e- ~ 000
Tonization

¢ (100eV) + AB inelastic . (<1006V) + A* + B+ ¢ D}ssomatlve Ionization
with Attachment
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Newly produced electrons are accelerated toward the anode and the
process cascades (Breakdown).
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With sufficient voltage, the gas rapidly becomes filled with positive
and negative particles throughout its volume, i.e. it becomes ionized.
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Positive ions are accelerated toward the negative electrode (cathode).
Collision with the cathode causes the emission of secondary
electrons which are emitted from the cathode into the plasma.

Cathode

Dr.PhiipD.Rack | Page13

» Secondary Electron Coefficient (5) * Secondary Electron Coefficient (y,)
vs Incident Electron Energy vs Incident Ion Energy

0.321

Secondary
emission

i Tungsten
ratio & a0

¥, in slectrons — — = Malybdenum
per ion

500 1000 1800 2000
Incident encray E, ew

lon kinetic energy (V)

Dr. Philip D. Rack Page 14




* Free electrons from secondary emission and from ionization are
accelerated in the field to continue the above processes, and a steady
state self-sustaining discharge is obtained.
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» Electrons are lost by: (a) Drift and diffusion to the chamber walls, (b)
recombination with positive ions, (c) attachment to neutral molecules
to form negative ions.
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The glow discharge, overall, must always remain neutral, although portions of
it may be charged negatively or positively.
Glow Discharge Regions

1 -- Cathode Dark Space (Crooke’s Dark Space)

2 -- Negative Glow

3 -- Faraday Dark Space

4 -- Positive Column

5 -- Anode Dark Space
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Most of the voltage drop is across the cathode dark space
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Plasma Species

* A plasma contains:
— Neutral Atomic and/or molecular species
— An equal number of (+) ions and (-) electrons

» Degree of ionization:

— f; =n./(n,+n,), where: n, is the number of electrons and
n0 is the number of neutral atoms or molecules.

— Typical glow discharge 10mTorr (ny~10'*cm) and
£=104

— High density plasmas can reach 102 or electron
densities of 10'*/cm?3

[
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Particle Energies and Temperatures

» Electrons

— Energy: E, 1-10eV with an average
temperature of ~ 2eV

— Temperature: E=2eV, T = E/kg: T=~ 23,000K
* Neutral particles
— E~0.025¢V

— Temperature = room temperature (293K)
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DC versus RF Plasmas

* Insulating materials will not sustain a
plasma

— Ion current charges the insulator positively and
ultimately extinguishes the plasma (ie. Can not
bleed off charge)

 Use rf power to deposit insulating materials
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RF Plasma

+ At frequencies > 100kHz electrons respond and
ions do not
— Typical rf frequency - 13.56 MHz (designated by FCC)
 High mobility of electrons causes a dc “self bias”

to develop on target after the first ac cycles(~1/2
rf peak-to-peak)
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Magnetic Field Effects

* Magnetic field strength (B) superimposed
on the electric Field (£)

— Lorentz force (F)

Fzm%:—q(waE)
where:

q is chare of particle

v is particle velocity

E is electric field vector

B is magnetic field vector
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Magnetrons

» Magnetic fields change trajectory of electrons in a
magnetic field

— Imposing a magnetic field effectively increases the
distance an electron travels, this in turn increases the
ionization rate (and subsequently the sputtering rate)
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Fig. 21. (a) The motion of an clectron in a magnetic field oriented penpcndm_llm_m_ the
e, (b) The same motion viewed from the side. The matien along the dircetion of the

pretic field line is unaffected hy the ficll.
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* Planar Magetron

—
EX|
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Fig, 3. A cireular planar magnetron eathade, shewing the shape of the magnetic field
and the resulting drift path, Not shown is the plasma (close to the cathode) or the power
supplies and anede.

* Enhanced rate

in high ion region
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Fig. 33. The depesition profile on a sample in {ront of a magnetron cathode as a function
of sample distance
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CROSS-SECTION

EXE
DRIFT PATH
Fig. 37. S-gun class of conical magnetrons.
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Fig. 38. An S-gun type of magnetron with two £ % & drift paths on the same axis.
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« Elastic — (billiard ball collisions) — only
kinetic energy is exchanged. Conservation
of both momentum and translational kinetic
energy.

* Inelastic — change in the internal (potential)
energy of the particles change (ionization,
excitation, dissociation...)
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AM M,
—2 — 7
(M, +M,)
where ¥ is the energy transfer function

Electron mass << ion/molecule, therefore
yis~ 104
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Inelastic Collisions

If M1 is an electron and M2 is an ion (M2 >> M1) the energy
Transferred from an electron to an atom or molecule can approach
Unity for 6 = 0.
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Cross-Sections

*Impact Ionization Cross Sections of Hydrocarbon Species

100 5

Methylene
e \lethane

Acetylene
Ethylene
Ethane
Propane

=== Benzene

Cross-section (x107'¢) (cm?)

Electron Energy (eV)

*Y.-K. Kiml, K. K. Irikura2, and M. E. Rudd3
http://physics.nist.gov/PhysRefData/lonization/Xsection.html
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Inelastic Events

Ionization

Dissociation

Vibrational

Rotational

Dissociative ionization

Dissociative ionization with attachment
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Chemical Reaction Rates

Bi-molecular Reactions:
A+B —->P

dnp
? =k, z(T)n n,

where k ,, 1s the thermally activated reaction

rate constant k , (T) = k, exp(— %T)
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Electron stimulated reactions:
e-+ A P

dn b~ k(e.T)
=k(e,T)n,n
dt A

KeT)= [ F(E, v (E)o, (E)E

where :
f(E,)1s the electron energy distribution
v,(E) 1s the electron velocity distribution

o, (E)is the total electron collisional cross - section
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