Golem- analysis of rake probe data

Golem

The oldest working tokamak in the world

- Located in Prague
- Can be remotely operated

Parameters

Toroidal magnetic field	< 0.5 T
Plasma current	< 10 kA
Plasma density	< 10 ¹⁹ m ⁻³
Electron temperature	< 100 eV

An example Golem shot

The rake probe

$$U_{fl} = U_{pl} - \alpha T_e \xrightarrow{T_e \approx Const.} E = -\nabla U_{pl} \approx -\nabla U_{fl}$$

The first probe tip was located 60mm from the vessel centre

,

Measuring ExB drift velocity

 $v_{pol} = \frac{E_{rad}}{B_{tor}}$

- The ExB drift is in the poloidal direction
- E_{rad} is calculated from the gradient in U_{pl}

Correlation

- Cross-correlation was calculated between the central probe, 6, and every other probe.
- From correlations, we can obtain information about structures moving in the plasma

Detecting plasma structures 1

Detecting plasma structures 2

Detecting plasma structures 3

- 80 time slices from a 10ms shot
- Time bins of width 75µs (75 data points)

The next step...

- Analyse different shots with different parameters
- Check repeatability of measurements
- Compare with results taken using different time windows
- Deduce velocities of plasma structures
- Deduce the type of instability (maybe)
- Compare with other diagnostics (e.g. fast camera, magnetic coil arrays...)