Proposal for a GOLEM experiment from BME $$\operatorname{NTI}$

Dr. Gergo Pokol Csaba Buday Daniel Imre Refy

March 16, 2010

Chapter 1 Introduction

The proposed experiment series is a laboratory exercise performed by 4 students at the nuclear technology branch of the physics MSc program at Budapest University of Technology and Economics (BME). The laboratory exercise is to be organized at 24th March 2010. 8:15. Prior to the actual measurement, students are provided with detailed instructions and a 1 hour long tutorial on the basic concept of tokamaks and the characteristics of the GOLEM tokamak. Measurements at GOLEM should start at about 9:30.

Chapter 2

Proposed experiments

- Date and time: 24th March 2010. 9:30
- Total number of shots: 60
- Mode: Online
- Remote control interface: makefile script in SSH shell
- Real-time communication: Skype chat

2.1 Measurement conditions

The GOLEM tokamak is a tokamak with full remote control capability and educational purpose. It is a small size tokamak device equipped with basic controls and diagnostics having dimensions:

- Major radius at the magnetic axis: $R_0 = 0.4$ m.
- Minor radius: $r_0 = 0.1$ m.
- Radial position of the limiter: $a_0 = 0.085$ m.

The parameters to be set remotely:

- Toroidal magnetic field (B_t) through the voltage of the toroidal field capacitor bank (U_B) .
- Toroidal electric field (E_t) through the capacitor bank for the ohmic heating (U_E) .
- The time delay between the triggers of the toroidal field and the ohmic heating (τ) .
- Hydrogen gas pressure (P_{H2}) .

The diagnostics used during the proposed session and to be accessed online:

- Loop voltage (U_{loop}) .
- Total toroidal current by Rogowski coil (I_{tot}) .

- Toroidal field measurement coil (B_t) .
- Plasma radiation by photodiode.
- Vessel pressure (P_v) .
- The temperature of the vacuum chamber (T_{ch}) .

2.2 Proposed discharges

- 1. Vacuum shots with varying parameters to determine the electrical parameters (resistivity and inductance) of the vacuum vessel. A simple estimation is to be carried out online, and a more sophisticated estimate offline.
- 2. Normal plasma shots with varying parameters and the time delay set to about 12-13 ms, which is the flat top time of the toroidal magnetic field. Aim is the estimation of:
 - (a) the break down voltage Paschen law parameters.
 - (b) time trace of the plasma current
 - (c) time trace of the Ohmic heating power
 - (d) time trace of the edge safety factor (rough estimate!)
 - (e) time trace of the central electron temperature (rough estimate!)
 - (f) plasma density in each shot (order of magnitude estimate!)
 - (g) time trace of the total kinetic plasma energy (order of magnitude estimate!)
 - (h) energy confinement time at the "'flat top"' (order of magnitude estimate!)
 - (i) Hugill diagram with H₂ pressure instead of plasma density. (Could be attempted using estimated plasma density.)
- 3. An attempt to detect the q=2 instability limit. To achieve this, the time delay should be set to the ramp-down of the toroidal magnetic field. Plot results in the Hugill-like diagram described above.