

PRPL - Acceleration of discharge repeatability on the tokamak GOLEM

Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering

Department of Physics

Field of Plasma Physics and Thermonuclear Fusion

Jan Buryanec

Year: 2024

Content

1. Introduction to the current discharge regime

- Power supply for key components
- Discharging of capacitors during the discharge

2. Discharge characteristics of capacitors on the tokamak GOLEM

- Approximation by an RLC circuit
- Resulting waveforms of the RLC circuit approximation
- Difference compared to a circuit with a thyristor

3. Possible improvement of discharge repeatability

- Utilization of energy from reversed-polarity capacitors
- Description of the problems that need to be resolved
- Solution to these problems
- Example of technological implementation of the solution

4. Project timeline

• Work tasks with an approximate timeline

1. <u>Introduction to the current</u> <u>discharge regime</u>

Current drive of the

tokamak GOLEM

- Blue signal Current drive
- Purple signal Torodial magnetic field
- Yellow signal 2kV single-pole power source
- Reversal of capacitor polarity

Shot #45100

Current drive of the

tokamak GOLEM

Discharging of capacitors

- Blue signal Current drive
- Purple signal Torodial magnetic field
- Yellow signal 2kV single-pole power source
- Reversal of capacitor polarity

Shot #45100

Current drive of the

tokamak GOLEM

- Blue signal Current drive
- Purple signal Torodial magnetic field
- Yellow signal 2kV single-pole power source
- Reversal of capacitor polarity

Shot #45100

Discharging of capacitors

Short-circuiting of capacitors

Current drive of the

tokamak GOLEM

- Blue signal Current drive
- Purple signal Torodial magnetic field
- Yellow signal 2kV single-pole power source
- Reversal of capacitor polarity

Shot #45100

Discharging of capacitors

Short-circuiting of capacitors

Capacitor hold reversed voltage

2. <u>Discharge characteristics of capacitors on the tokamak GOLEM</u>

$$U_{total} = U_R + U_L + U_C$$

Approximation by an RLC circuit 3

$$U_{total} = U_R + U_L + U_C$$

$$R \cdot I(t) + L \cdot \frac{dI(t)}{dt} + \frac{1}{C} \int_0^t I(\tau) d\tau + U_C(0) = 0$$

Laplace transform

Approximation by an RLC circuit 3

$$U_{total} = U_R + U_L + U_C$$

$$R \cdot I(t) + L \cdot \frac{dI(t)}{dt} + \frac{1}{C} \int_0^t I(\tau) d\tau + U_C(0) = 0$$

Approximation by an RLC circuit 3

$$U_{total} = U_R + U_L + U_C$$

$$U_{total} = U_R + U_L + U_C$$

$$U_{total} = U_R + U_L + U_C$$

$$R \cdot I(t) + L \cdot \frac{dI(t)}{dt} + \frac{1}{C} \int_0^t I(\tau) d\tau + U_C(0) = 0$$

Laplace transform

$$U_C(t) = U_C(0) \cdot e^{-\delta t} \cdot (\cos \omega t + \frac{\delta}{\omega} \sin \omega t)$$

$$I(t) = -U_C(0)C\frac{\omega^2 + \delta^2}{\omega} \cdot e^{-\delta t} \sin \omega t$$

$$\delta = \frac{R}{2L}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega = \sqrt{\omega_0^2 - \delta^2}$$

Resulting waveforms of the RLC Circuit approximation V PRAZE CIRCUIT APPROXIMATION

$$U_C(t) = U_C(0) \cdot e^{-\delta t} \cdot (\cos \omega t + \frac{\delta}{\omega} \sin \omega t)$$
$$I(t) = -U_C(0)C \frac{\omega^2 + \delta^2}{\omega} \cdot e^{-\delta t} \sin \omega t$$

$$I(t) = -U_C(0)C\frac{\omega^2 + \delta^2}{\omega} \cdot e^{-\delta t} \sin \omega t$$

$$\delta = \frac{R}{2L}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega = \sqrt{\omega_0^2 - \delta^2}$$

A classic switch, such as a relay

Difference compared to a circuit CESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE With a thyristor

$$U_C(t) = U_C(0) \cdot e^{-\delta t} \cdot (\cos \omega t + \frac{\delta}{\omega} \sin \omega t)$$

$$I(t) = -U_C(0)C\frac{\omega^2 + \delta^2}{\omega} \cdot e^{-\delta t} \sin \omega t$$

$$\delta = \frac{R}{2L}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega = \sqrt{\omega_0^2 - \delta^2}$$

A thyristor does not allow

Difference compared to a circuit with a thyristor

$$U_C(t) = U_C(0) \cdot e^{-\delta t} \cdot (\cos \omega t + \frac{\delta}{\omega} \sin \omega t)$$

$$I(t) = -U_C(0)C \frac{\omega^2 + \delta^2}{\omega} \cdot e^{-\delta t} \sin \omega t$$

$$\delta = \frac{R}{2L}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$\omega = \sqrt{\omega_0^2 - \delta^2}$$

circuit.

3. <u>Possible improvement of discharge repeatability</u>

2 == 500mV -4.30V

Could the energy in reversed-polarity capacitors be utilized?

Problems that need to be resolved!

Reversed-polarity capacitors

Could the energy in reversed-polarity capacitors be utilized?

Problems that need to be resolved!

1. Single-pole power source

Reversed-polarity capacitors

Could the energy in reversed-polarity capacitors be utilized?

Problems that need to be resolved!

- 1. Single-pole power source
- 2. Thyristor orientation

Reversed-polarity capacitors

Could the energy in reversed-polarity capacitors be utilized?

Problems that need to be resolved!

- 1. Single-pole power source
- 2. Thyristor orientation
- 3. Discharge orientation into the coil

Reversed-polarity capacitors

Could the energy in reversed-polarity capacitors be utilized?

Problems that need to be resolved!

- 1. Single-pole power source
- 2. Thyristor orientation
- 3. Discharge orientation into the coil
- 4. Charging of the capacitor

Reversed-polarity capacitors

The voltage value after reversing the polarity of the capacitor

Shot #45100

U_Bt = 1000V, C_Bt = 67,5mF -> U_Bt(reverse) = -500V U_CD = 500V, C_CD = 13,5mF -> U_CD(reverse) = -300V

Use of commutators for specific circuit areas

Use of commutators for specific circuit areas

1. Solution to the problem with the single-pole power source

Use of commutators for specific circuit areas

- 1. Solution to the problem with 2. Solution to the problem the single-pole power source
 - with thyristor orientation

Use of commutators for specific circuit areas

- 1. Solution to the problem with 2. Solution to the problem the single-pole power source
 - with thyristor orientation
- 3. Solution to the problem with the discharge orientation of the capacitor into the coil

Current implementation of commutators for the given electrical circuit

Solution to problem 4

Solution to problem 4

4. Solution for capacitor charging by applying a comparator instead of charging via an oscilloscope

Example of a comparator designed for capacitor charging

- When the voltage on both inputs is equalized, the relay is activated, disconnecting the power source.
- This method of monitoring the current value on the capacitor is much faster than using an oscilloscope and an ethernet conection (Approximately 1second response time).

Reference input set to a voltage corresponding to the desired voltage on the capacitor

Input of the current voltage value on the capacitor converted into a value suitable for computers

10

4. Project timeline

1. Introduction to the comparator for capacitor charging

- Study the proper operation and configuration of the comparator
- Test the operation within a table-top experiment

2. Assist with completing the commutator technology

- Fully understand the assembled technology and their components
- Programing the control system for managing the commutators and the neccesary relays used in the circuit
- Test the operation and functionality of the technological solution in a tabletop experiment

3. Implementation of the technology on the tokamak GOLEM

- Integration of the technology into operation
- Conducting functionality tests
- Drawing conclusions and fine-tuning technology

Thank you for your attention

Application of an additional diode in the discharge part of the circuit

