$I_{ch} (t)$ $\overline{R_{ch}}\approx\frac{U_l (t)}{I_{ch} (t)}$ $I_{ch+p} (t)$ $1.1\cdot 10^7$ A/V $\int_0^t$ $\overline{I_p}=_{t_1}^{t_2}$ $\overline{U_l}=_{t_1}^{t_2}$ $\overline{n_e}=_{t_1}^{t_2}$ $\overline{R_p}=\frac{\overline{U_l}}{\overline{I_p}}$ $\overline{P_{OH}}=\overline{R_p}\cdot \overline{I_p}^2$ $\overline{T_{e}(0)}=0.9\cdot\overline{R_p}^{-2/3}$ $\frac{d W_p(t)}{dt}=0$ $\frac{d W_p(t)}{dt}|_{t_1}^{t_2}=0$ $(\frac{d W_p(t)}{dt}=0)$ $\overline{P_{loss}}=\overline{P_{OH}}$ $\overline{W_p}=\overline{V_p}\cdot\frac{\overline{n_e}\cdot k_B\cdot\overline{T_{e}(0)}}{3}$ $\overline{\tau_E}=\frac{\overline{W_p}}{\overline{P_{loss}}}$ $\overline{\tau_{eE}}=\frac{\overline{W_p}}{\overline{P_{loss}}}$ $\overline{V_p}=(80 \pm 10)$ l ${V_p}=(57 \pm 5)$ l $eV=1.602\cdot 10^{-19}$ J $R_p=\frac{U_l}{I_p}$ $P_{OH}=R_p\cdot I_p^2$ $T_{e}(0)=0.9\cdot R_p^{-2/3}$ $\frac{d W_p(t)}{dt}=0$ $\frac{d W_p(t){dt}|_{t_1}^{t_2}=0$ $(\frac{d W_p(t){dt}=0)$ $P_{loss}=P_{OH}$ $W_p=V_p\cdot\frac{n_e\cdot k_B\cdot T_{e}(0)}{3}$ $W_p=V_p\cdot\frac{n_e\cdot k_B\cdot (T_{e}(0)\cdot eV)}{3}$ $\tau_E=\frac{W_p}{P_{loss}}$ $\tau_{eE}=\frac{W_p}{P_{loss}}$ $V_p}=(80 \pm 10)$ l