\def\GW{/GW} %\def\GW{/home/svoboda/Downloads/Marianska} \def\visibility{true} \input{\GW/root/GW4reports/GWlatexBeamerHead.tex} \def\IOsection#1#2{\section{#1}#2} \def\viz#1{#1} %\GWinput{root/GW4reports/Templates/ContentDefinitions/HideSubsections/latexsrc.page} \usepackage[ %backend=biber, backend=bibtex, style=alphabetic, sorting=ynt ]{biblatex} \addbibresource{\GW/root/bibtex/golem} \AtBeginSection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection] \end{frame} } \AtBeginSubsection[] { \begin{frame} \frametitle{Outline} \tableofcontents[currentsection,currentsubsection] \end{frame} } \begin{document} \title{Mari\'{a}nsk\'a 2022} \date{} \author{Vojt\v{e}ch Svoboda } \slide{Golem \#14 - from \#34490 to \#37805}{ \titlepage\centering \vspace{-2cm} } \section{Introduction} \begin{frame} \frametitle{Forecast 2021} \def\cvd{\no{\#C19}} \begin{itemize} \item The Night of Scientists V. \cvd \item FUMTRAIC VI \yes, SCIWTRAIC@GOLEM VIII \cvd, HUNTRAIC VII \yes \item GOMTRAIC III (5 days)! \cvd \item Bachelor thesis ? \item Diploma thesis IV cont. \item papers in FUSENGDES, AJP .. ? \item TRAICS: Eindhoven, Bangkog \no{?}, Torino, Moscow, \item Runaways intensive studies (JČ, postdoc, GACR grant, Valérie, ) \item Edge Plasma intensive studies (KJ, PM: TunnelP) \im End of the reconstruction ... start to exploit the facility. \end{itemize} \end{frame} \def\LOCFigSlide#1#2#3{\begin{frame}\frametitle{#1} \begin{center} \begin{figure}[ht] \includegraphics[width=#2\tw]{figs/#3} \end{figure} \end{center} \end{frame}} \def\reference#1#2{\flushright #1 \nocite{#2}} \def\LOCFigSlideWithRef#1#2#3#4#5{\begin{frame}\frametitle{#1} \begin{center} \begin{figure}[ht] \includegraphics[width=#2\tw]{figs/#3} \end{figure} \end{center} \reference{#4}{#5} %\flushright #4 \cite{#5} %\printbibliography[keyword=#4] \end{frame}} \def\LOCFigSlideWithURL#1#2#3#4{\begin{frame}\frametitle{#1} \begin{center} \begin{figure}[ht] \includegraphics[width=#2\tw]{figs/#3} \end{figure} \end{center} \url{#4} \end{frame}} \section{Introduction} \FigSlide{Honza}{0.9}{/Staff/Employees/HonzSt/PG/cimg8418.jpg} \FigSlide{South 01/2022}{0.9}{/Chronicle/PhotoGallery/South/0122.JPG} \FigSlide{North 01/2022}{0.9}{/Chronicle/PhotoGallery/North/0122.JPG} \section{Current scientific topics} \viz{ \subsection{Edge plasma studies} \subsubsection{Probes: BPP + Lang probes} \LOCFigSlide{Dario Cipciar (Jiří Adámek): Swept BPP probe. MSc project. 2021}{0.6}{PetiProbe} \LOCFigSlide{Dario Cipciar(Jiří Adámek): Swept BPP probe: complex set-up}{0.55}{SweptBPPprobeSetup} \LOCFigSlide{Dario Cipciar(Jiří Adámek): Swept BPP probe: Oscilloscope screenshot}{0.95}{SweptBPPprobeScope36707} \LOCFigSlideWithRef{Fast ion temperature measurement using swept ball-pen probe. MSc thesis. 2021}{1}{SweptBPPExcerptEPS2021}{Macha, P., Cipciar, D. \& Adámek, J. et al. @EPS 2021}{MachaEPS21} \LOCFigSlideWithRef{\small Martina Lauerová (Kateřina Hromasová). Electron temperature measurements using Lang and BPP probes. SOČ project 2021}{0.5}{ComparisonProbeMethodsExerptEPS2021}{Macha, P., Lauerová, M.. \& Hromasová, K. et al. @EPS 2021}{MachaEPS21} \LOCFigSlideWithRef{Aleš Socha (Kateřina Hromasová), Turbulent structuresusing using Double rake probe. SOČ project 2021}{0.5}{TurbulentStructuresExcerptEPS2021.png}{Macha, P., Socha, A.. \& Hromasová, K. et al. @EPS 2021}{MachaEPS21} \subsection{Probes: Rail probe} \LOCFigSlide{Jiří Malinak (Jiří Adámek): Rail probe. BSc project. 2021}{1}{RailProbeInTokamak} \LOCFigSlide{Jiří Malinak (Jiří Adámek): Rail probe: complex set-up}{0.55}{RailProbeSetup} \LOCFigSlide{Jiří Malinak (Jiří Adámek): Rail probe: Oscilloscope screenshot}{0.95}{SweptRailprobeScope37068.png} \LOCFigSlideWithRef{Electron temperature measurements using rail probe}{1}{RailProbeExcerptEPS2021}{Macha, P., Malinak, J. \& Adámek, J. et al. @EPS 2021}{MachaEPS21} \subsection{Biasing experiments} \LOCFigSlide{Sasha Melnikov \& students. Biasing experiment. April, 2021}{0.5}{BiasingElectrode.jpg} \LOCFigSlide{Biasing electrode}{1}{BiasingProbe.jpg} \LOCFigSlide{Biasing electrode with Double rake probe in tokamak}{0.6}{BiasingPlusDRP_.jpg} } \viz{ \subsection{Run Away Electrons} \subsubsection{Diagnostics (CAAS project)} \LOCFigSlide{\small Lukáš Lobko (Jan Čeřovský, Ondřej Ficker): Měření ubíhajících elektronů na tokamaku GOLEM prostřednictvím scintilačních detektorů. Lab. work. 2021}{1}{HXRScintprobes_.jpg} \LOCFigSlideWithRef{Measurements of HXR radiation}{1}{HXRmeasurementExcerptEPS2021}{Macha, P., Lobko, L. et al. @EPS 2021}{MachaEPS21} \LOCFigSlide{Čeřovský, J. et al. Progress in HXR diagnostics at GOLEM and COMPASS tokamaks}{1}{ECPD21.png} \subsubsection{Physics} \slide{Physics}{-} \subsection{Others} \subsubsection{Breakdown studies} \FigSlideWithRef{Y. Siusko et al. Breakdown phase in the golem tokamak and its impact on plasma performance}{0.6}{Presentations/Journals/UJP.ua/20/Fig10}{Y. Siusko et al. Ukrainian Journal of Physics 66.3 (2021), pp. 231–239. }{Siusko_2021} \FigSlideWithRef{G.A. Sarancha et al. Hydrogen And Helium Discharges In The Golem Tokamak}{0.5}{/Presentations/Journals/PAST.ru/21/Fig6.png}{G.A. Sarancha et al. PAST(TF) 4 (2021), pp. 92–110}{Sarancha_2021_PAST} %Title, Size, \subsubsection{Magnetohydrodynamic studies} \FigSlideWithRef{G.A. Sarancha et al. Hydrogen And Helium Discharges In The Golem Tokamak}{0.8}{/Presentations/Journals/JPCS/21/Fig1.png}{G.A. Sarancha et al. PAST(TF) 4 (2021), pp. 92–110}{Sarancha_2021_PAST} %Title, Size, \FigSlideWithRef{G.A. Sarancha et al. Hydrogen And Helium Discharges In The Golem Tokamak}{0.8}{/Presentations/Journals/PAST.ru/21/24a26a.png}{G.A. Sarancha et al. PAST(TF) 4 (2021), pp. 92–110}{Sarancha_2021_PAST} %Title, Size, \FigSlideWithRef{G.A. Sarancha et al. Magnetic turbulence and long-range correlation studies in the {GOLEM} tokamak}{0.8}{/Presentations/Journals/JPCS/21/Fig1.png}{G.A. Sarancha et al. JPCS 2055.1 (2021), p. 012003}{Sarancha_2021_JPCS} %Title, Size, FigPath, TextRef, Ref \FigSlideWithRef{G.A. Sarancha et al. Magnetic turbulence and long-range correlation studies in the {GOLEM} tokamak}{1}{/Presentations/Journals/JPCS/21/Fig5.png}{G.A. Sarancha et al. JPCS 2055.1 (2021), p. 012003}{Sarancha_2021_JPCS} %Title, Size, FigPath, TextRef, Ref } \vizon{ \section{Technology improvements} \subsection{Plasma position Stabilization} \GWis{/Infrastructure/Stabilization/Slides/FeedbackSetup} \FigSlide{Martin Humpolec (Daniela Kropáčková). External plasma stabilization. SOČ 2022}{0.55}{/Infrastructure/Stabilization/PG/KepcoAmplifiers.JPG} \FigSlide{11/21 Martin Humpolec (štěstí? náhoda?)}{0.9}{/Infrastructure/Stabilization/Slides/Achievements/1221_MH_LongDirtyPlasma/Comparison.png} \FigSlideWithURL{01/22 Martin Humpolec \& Daniela Kropáčková: commissioning }{0.9}{/Infrastructure/Stabilization/Slides/Achievements/0122_MH_DK_Commissioning/ShotsOfTheDay.png}{http://golem.fjfi.cvut.cz/shots/37895/Analysis/Homepage/psql/ShotsOfTheDay.php} } \viz{ \section{Diagnostics improvements} \FigSlide{Fast cameras 2 tomography (Jakub \& Jakub)}{0.9}{/Diagnostics/Radiation/FastCameras/FastCam MiniUX/PG/0122.JPG} \LOCFigSlide{Bedna šampaňského: vyčuchání a znásilnění komunikace}{0.9}{PFV} \FigSlide{Calorimetry (J. Caloud)}{0.9}{/Diagnostics/ParticleFlux/Calorimeter/PG/DSCN1864.JPG} \FigSlide{Motor driven Z-angle manipulator}{0.6}{/HW/Vacuum/Manipulators/Pfeiffer/Motor-Controll/PG/DSCN1865.JPG} \FigSlide{Plug in modules}{0.9}{/HW/LaboratoryInstruments/PluginModules/PG/Old_New.png} } \vizon{ \section{Education} %\subsection{Undergraduate Projects} \slide{Undergraduate Projects}{ \bi \im Adéla Kubincová (Ondřej Kudláček). Sofistikované metody real-time řízeni tokamakových procesů. BP 2021. \im Štěpán Malec (Vladimír Linhart). HXR detection with Timepix3. VU 2021. \im Marek Tunkl (Michal Marcišovský?). Strip detector. DP 2021. \ei } %\subsection{Postrgraduate Projects} \slide{Postgraduate Projects}{ \bi \im Petr Mácha. Studium okrajového plazmatu v tokamacích pomocí pokročilých elektrických sond. DP 2020. \im Sergei Kulkov. Timepix3 for HXR detection. PhD 2020. \im Vladimir Ivanov. RE studies with ECRH radiometer. \ei } } \viz{ \subsection{High school students} \LOCFigSlide{Matyáš Horák (Katka Hromasová): Profil elektronové teploty v komoře tokamaku}{1}{SOC21_MatyasHorak} \LOCFigSlide{Aleš Socha (Katka Hromasová): Poloha zóny vytváření turbulentních struktur v okrajovém plazmatu tokamaku}{1}{SOC21_AlesSocha} \LOCFigSlide{Martina Lauerová (Katka Hromasová): Měření elektronové teploty na tokamaku GOLEM elektrickými sondami}{1}{SOC21_MartinaLauerova} } %\printbibliography[keyword=MachaEPS19] \section{Public relations} \GWFigSlide{11/21 Guido Lange}{0.9}{Chronicle/SpecialGuests/1121GuidoLange.JPG} \section{Production} \LOCFigSlide{Himmel, M. Průjezd, verze 2. 2020.}{0.9}{PrujezdNavrh} \GWFigSlide{Kauza průjezd}{0.6}{Production/Events/19Prujezd/PG/20200903_173829_s_portr} \section{Publications} \FigSlideWithRef{Y. Siusko et al. Breakdown phase in the golem tokamak and its impact on plasma performance}{0.6}{Presentations/Journals/UJP.ua/20/Screenshot}{Y. Siusko et al. In Ukrainian Journal of Physics 66.3 (2021), pp. 231–239. }{Siusko_2021} \FigSlideWithRef{G.A. Sarancha et al. Hydrogen And Helium Discharges In The Golem Tokamak}{0.5}{/Presentations/Journals/PAST.ru/21/Screenshot.png}{G.A. Sarancha et al. In PAST(TF) 4 (2021), pp. 92–110}{Sarancha_2021_PAST} %Title, Size, FigPath, TextRef, Ref \FigSlideWithRef{G.A. Sarancha et al. Magnetic turbulence and long-range correlation studies in the {GOLEM} tokamak}{0.8}{/Presentations/Journals/JPCS/21/Screenshot.png}{G.A. Sarancha et al. JPCS 2055.1 (2021), p. 012003}{Sarancha_2021_JPCS} %Title, Size, FigPath, TextRef, Ref \FigSlideWithRef{P. Mácha et al. Tokamak GOLEM for fusion education - chapter 12}{0.8}{/Presentations/Conferences/EPS/47th_online_2021/Education/Screenshot}{Europhysics conference abstracts. 2021, P4.1028}{MachaEPS21} %Title, Size, FigPath, TextRef, Ref \FigSlideWithRef{S Kulkov et al. Runaway electron study at the COMPASS tokamak using the Timepix3-based silicon pixel detector with SPIDR 10 GBps readout}{0.8}{/Presentations/Conferences/EPS/47th_online_2021/Runaways/Screenshot.png}{Europhysics conference abstracts. 2021, P3.1006}{KulkovEPS21} %Title, Size, FigPath, TextRef, Ref \section{Miscellaneous} \viz{ \section{Plans} \slide{Generally}{ \bi \im After the COMPASS shutdown ... the only tokamak far wide. \im Fast spectrometry on specific lines. \ei } \LOCFigSlide{Jan Buryanec (Vojtěch Svoboda): Plasma current control}{0.8}{FlatTop} \FigSlide{Gabo Vondrášek. Maxi přepínač}{0.6}{/HW/Specials/DiagnosticSwitch/PG/DSCN1871.JPG} \FigSlide{Martin Himmel \& Honza Buryanec: LED experimental set-up}{0.8}{/Tokamak/ExperimentalSetup/LEDmodel/PG/2017-12-21_22-29-23.jpg} \LOCFigSlide{Oprava interferometru (na dobré cestě)}{0.9}{Interferometr.jpg} \LOCFigSlideWithURL{Free post discharge analysis script upload/access for trained students }{0.9}{DataPlotting.png}{http://golem.fjfi.cvut.cz/shots/36443/} \LOCFigSlide{Start to exploit all the stuff}{1}{StartScience.png} \slide{To tu ještě nebylo ...}{Nakonec, je tu ještě myšlenka, pokud by byla možnost na tokamak GOLEM dostat trochu deuteria, mohli bychom s pomocí NuDET detektoru ověřit přítomnost energií ubíhajících elektronů vyšších než 2,2 MeV. Totiž, HXR fotony o energii 2,2 MeV a vyšší dokáží iniciovat fotojaderné reakce s jádry deuteria za vzniku neutronů, které se dají NuDET detektorem lehce změřit včetně separace od HXR fotonů. \reference{Lobko, L. Lab. work. 2021}{PRPLLobko21}} } \section{Acknowledgments} %\LOCFigSlide{Petr Mácha}{0.9}{PM_statnice} %\LOCFigSlide{Katka Hromasová}{0.9}{KatkaPrujezd} \input{figs/ack21}\GWslide \GWinput{root/GW4reports/Templates/References/latexsrcbiblatex.page} \end{document}