Experimentální fyzika

The tokamak GOLEM contribution (2x) ...cont.

Vojtěch Svoboda on behalf of the GOLEM tokamak team

December 13, 2019

http://golem.fjfi.cvut.cz/EXF2

Table of Contents

1 Specific technological issues

- 2 Diagnostics of Fusion Plasmas
- 3 Data handling @ the GOLEM tokamak
- 4 PRA2 #13 The Electron energy confinement time calculation
- 5 Appendix

Table of Contents

1 Specific technological issues

- Vacuum
- Real-time management of the experiment

2 Diagnostics of Fusion Plasmas

- 3 Data handling @ the GOLEM tokamak
- 4 PRA2 #13 The Electron energy confinement time calculation

5 Appendix

Vacuum IDEAL pump down basic theory

- Volume V [l].
- Pumping speed *S* [l/s].
- pressure p(t) [Pa].
- initial pressure *p*₀ [Pa].
- Basic pump-down equation: $V \frac{dp}{dt} = -S \cdot p.$
- Basic pump down time evolution: $p(t) = p_0 \cdot e^{-S/V * t}$
- .. with p_{lim} limite pressure: $p(t) = (p_0 p_{lim}) \cdot e^{(-S/V*t)} + p_{lim}$
- .. with Q_{leak} leakage: $p(t) = (p_0 - p_{lim} - Q_{leak}/S) \cdot e^{(-S/V*t)} + p_{lim} + Q_{leak}/S$

Pump down process - model

Vacuum condition after a DAS addition

Vacuum leakage hit

Table of Contents

1 Specific technological issues

- Vacuum
- Real-time management of the experiment

2 Diagnostics of Fusion Plasmas

- 3 Data handling @ the GOLEM tokamak
- 4 PRA2 #13 The Electron energy confinement time calculation

5 Appendix

Problem

Plasma position /magnetic/ diagnostics

Plasma position stabilization

 $\vec{F} \approx \vec{I_p} \times \vec{B}$

credit:[Kocman, J., 2015]

PID

credit:[Wikipedia contributors, 2018]

- r(t): desired setpoint.
- y(t): measured process variable.
- e(t): error value.
- u(t): control variable.

Plasma position stabilization

credit:[Svoboda et al., 2015]

Plasma stabilization ON/OFF

Plasma DisStabilization :-)

credit:[Svoboda et al., 2015]

GOLEM horizons

Tokamak GOLEM - schematic experimental setup

Table of Contents

1 Specific technological issues

- 2 Diagnostics of Fusion Plasmas
- 3 Data handling @ the GOLEM tokamak
- 4 PRA2 #13 The Electron energy confinement time calculation
- 5 Appendix

Diagnostics of fusion plasmas - an overview

credit:[H.-W.Bartels at al., 1993]

JET tokamak - diagnostic overview

credit:[F4E, 2007]

The GOLEM tokamak - standard diagnostics

"Typical", well executed discharge @ GOLEM

Table of Contents

1 Specific technological issues

2 Diagnostics of Fusion Plasmas

- Electromagnetic measurements
- Passive radiation measurements
- Active radiation measurements
- Particle measurements

3 Data handling @ the GOLEM tokamak

4 PRA2 #13 - The Electron energy confinement time calculation

5 Appendix

Schematic of electromagnetic diagnostics

credit:[Wesson, 2004]

Loop voltage - theoretical introduction

- Corresponds to the toroidal electric field E_t or time variance of Ψ • Voltage induced in a one loop of wire: $U_l = \oint_l \mathbf{E}_t \cdot d\mathbf{I}$
- On a circular path: $U_I = E_t 2\pi R$
- Kelvin-Stokes theorem transforms closed boundary curve integral \$\oint_{l} \mathbf{E}_{t} \cdot d\mathbf{I}\$ into the "circulations of the fields": \$\iint_{S} \nabla \times \mathbf{E}_{t} \cdot d\mathbf{S}\$
 From Faraday law \$\nabla \times \mathbf{E}_{t} = -\overline{\mathbf{B}} \overline{\partial t}\$ the induced voltage \$U_{l} = -\iint_{S} \overline{\mathbf{B}} \overline{\partial t} \cdot d\mathbf{S} = -\overline{\partial t} \iint_{S} \mathbf{B} \cdot d\mathbf{S} = -\overline{\partial t}\$

Loop voltage U_l @ the GOLEM tokamak

Magnetic coils

- A small coil of area A with N windings measure time varying magnetic field B.
- Voltage induce in one coil winding: $U_i = \oint_I \mathbf{E} \cdot d\mathbf{I}$
- Kelvin-Stokes theorem transforms closed boundary curve integral $\oint_I \mathbf{E} \cdot d\mathbf{I}$ into the "circulations of the fields": $\iint_S \nabla \times \mathbf{E} \cdot d\mathbf{S}$
- From Faraday law $\nabla \times \mathbf{E} = -\partial \mathbf{B} / \partial t$ the induced voltage $U_i = -\iint_S \partial \mathbf{B} / \partial t \cdot d\mathbf{S}$
- Considering constant surface $\mathbf{S} \perp \mathbf{B}$: $U_i = -S\dot{B}$
- N windings of the coil generate $U = -NS\dot{B}$
- Leads should be twisted to minimize external *S*.
- Raw signal should be integrated numerically or electrically to get real signal *B*.

Toroidal magnetic field B_t @ the tokamak GOLEM

Measuring coil

Rogowski coil for the current I measurements

credit:[PEM, 2018]

- Ampere's Law: ∇ × B = µ₀j (neglecting D)
- current through (const) surface S: $\int \mathbf{j} \cdot d\mathbf{S} = I$
- (const) poloidal field along surface border *I*: $\int \nabla \times \mathbf{B} \cdot d\mathbf{S} = \oint B_p dl = IB_p$
- voltage induced: $U_I = -N\dot{B}_p S_c = -\mu_0 \frac{NS_c}{r} \dot{I}$
- The wire of the coil is back-wounded to ommit stray magnetic fields from other possible sources.

Rogowski coil for the (chamber & plasma) current I_{ch+p} measurements

- Ampere's Law: ∇ × B = µ₀j (neglecting D)
- current through (const) surface S: $\int \mathbf{j} \cdot d\mathbf{S} = I_{ch+p}$
- (const) poloidal field along surface border *I*: $\int \nabla \times \mathbf{B} \cdot d\mathbf{S} = \oint B_p dI = IB_p$
- voltage induced: $U_{I_{ch+p}} + U_t U_t = -N\dot{B}_pS_c = -\mu_0\frac{NS_c}{l_{ch+p}}\dot{I}_{ch+p}$
- The wire of the coil is back-wounded to ommit a strong toroidal magnetic field B_t signal.

Total current I_{ch+p}

Magnetic measurements generally I

- Raw signals (analog U_r(t) or, respectively, it's discretized digital U_i counterpart form) must be specialy maintained:
 - corrected for the DC bias U_{offset} of the measurement circuit,
 - integrated (pure diagnostics signal voltage $U_d(t)$ is induced by the time derivative of the appropriate magnetic flux),
 - multiplied by calibration factors C_d ($C_B t$, C_{RC}).
- We can express the basic relationship $U_r(t) = U_d(t) + U_{offset}$
- The measured signal U_d(t) is proportional to the time derivative of the original physical quantity D(t) signal (it is a magnetic measurement):

$$U_d(t) \propto rac{dD(t)}{dt}$$
, or $U_d(t) = C_d rac{dD(t)}{dt}$

Where the linearity coefficient C_d is called a calibration factor.

Magnetic measurements generally II

To determine the desired physical quantity D(t), we just have to perform an integration over time:

$$D(t) = \frac{1}{C_d} \int_{0}^{t} U_d(t') dt' = \frac{1}{C_d} \int_{0}^{t} (U_r(t) - U_{offset}) dt'$$

- In reality, the measurement is not continuous. The system performs a series of measurements U_i separated by with time step $\Delta t = 1$ us.
- In practice, we replace the integral by a sum:

$$D_{i} = \frac{1}{C_{d}} \sum_{j=0}^{t/\Delta t} (U_{i}(t_{j}) - U_{offset}) \Delta t$$
$$D_{i} = \frac{1}{C_{d}} \left(\sum_{j=0}^{t/\Delta t} U_{i}(t_{j}) \right) - U_{offset} t$$

The offset U_{offset} can be specified from the beggining of the data series before switching on the real experiment.

Magnetic measuremet demo - game with U_{offset}

With U_{offset}

Table of Contents

1 Specific technological issues

2 Diagnostics of Fusion Plasmas

- Electromagnetic measurements
- Passive radiation measurements
- Active radiation measurements
- Particle measurements

3 Data handling @ the GOLEM tokamak

4 PRA2 #13 - The Electron energy confinement time calculation

5 Appendix

Radiation involving atoms and ions:

- **Free-free** (free electrons in the field of ions) ... continuous spectrum bremsstrahlung.
- Free-bound (free electrons captured by an ion) .. continuous spectrum
- (GOLEM) Bound-bound (electrons in an excited or ionized atoms)
 ... line spectrum
 - Identification of the elements present in the plasma.
 - Measurement of the impurity influx rates from walls and limiters
 - Determination of total impurity concentrations.
 - Investigations of transport processes by comparing measured impurity concentration profiles with transport models.
Ionization Balance of the plasma species when heated

credit:[J.S. Kaastra, 2008]

GOLEM tokamak time evolution of the spectrum

Automated line fitting algorithm ([Alfa, 2018])

4336.68	4338.67	19812.486	0.000	1604.396	11.601	He II	4.10	4f+ 2F*	10g+ 2G	32
4411.09	4413.11	12470.760	0.000	992.836	11.800	Ne II	V57c	3d 4F	4f 1[3]*	4
4628.42	4630.54	11403.713	0.000	865.255	12.381	NII	V5	3s 3P*	3p 3P	5
4636.73	4638.86	31186.416	0.000	2362.020	12.404	0 11	V1	3s 4P	3p 4D*	2
4645.29	4647.42	74293.625	0.000	5616.542	12.427	C III	V1	3s 3S	3p 3P*	3
4857.09	4859.32	121851.461	0.000	8810.176	12.993	He II	4.8	4f+ 2F*	8g+ 2G	32
5004.55	5006.84	15754.210	0.000	1105.509	13.388	[O III]	F1	2p2 3P	2p2 1D	5
5666.18	5666.63	14319.603	0.000	979.118	13.739	NII	V3	3s 3P*	3p 3D	3
5675.56	5676.02	16486.086	0.000	1125.389	13.762	NII	V3	3s 3P*	3p 3D	1
6547.57	6548.10	15318.212	0.000	906.404	15.876	[N II]	F1	2p2 3P	2p2 1D	3
6559.57	6560.10	274134.750	0.000	16191.334	15.906	He II	4.6	4f+ 2F*	6g+ 2G	32
6582.97	6583.50	27489.877	0.000	1617.875	15.962	[N II]	F1	2p2 3P	2p2 1D	5
6794.46	6795.00	12099.052	0.000	689.907	16.475	[K IV]	F1	3p4 3P	3p4 1D	3
7750.47	7751.06	35708.781	0.000	481.826	69.623	[Ar III]		3p4 3P	3p4 1D	3
8001.25	8001.86	13357.887	0.000	174.592	71.876	Ar I		3d 2<1>*	8p 2<1>	3

Table of Contents

1 Specific technological issues

2 Diagnostics of Fusion Plasmas

- Electromagnetic measurements
- Passive radiation measurements
- Active radiation measurements
- Particle measurements

3 Data handling @ the GOLEM tokamak

4 PRA2 #13 - The Electron energy confinement time calculation

5 Appendix

Electron denstity n_e measurement: basic strategy

4.13(2)

A microwave interferometer for plasma density measurement. 1.without plasma, signals from path(a) and (b) are 180° out of phase. 2.with plasma, the phase in (b) changed as λJ , (by higher plasma density). Electron density n_e interferometer measurement introduction (extreme simplification B = 0)

Electromagnetic transverse wave:

$$E_x(z,t) = E_0 \cos(\omega t + kz)$$

Maxwell Equations@Vacuum:			Maxwell	Εqι
	Equ		$\nabla \cdot \mathbf{F}$	=
$ abla \cdot \mathbf{E}$	=	0		
$\nabla \cdot \mathbf{B}$	=	0	$\nabla \cdot \mathbf{B}$	=
		ů B	$ abla imes \mathbf{E}$	=
$\vee \times \mathbf{E}$	=	$-\mathcal{O}_t \mathbf{B}$	$\nabla \sim \mathbf{P}$	
$\nabla \times \mathbf{B}$	=	μοεο∂₊Ε	$\mathbf{V} \times \mathbf{D}$	=
\implies		<i>p</i> =0=0=1=	$\implies The$	e refi
The refr	$N = \sqrt{1}$	L — 4		

Maxwell Equations@Plasma:

$ abla \cdot \mathbf{E}$	=	$ ho/\epsilon_0$
$ abla \cdot \mathbf{B}$	=	0
$\nabla\times \mathbf{E}$	=	$-\partial_t {f B}$
$\nabla\times {\bf B}$	=	$\mu_0 \mathbf{J} + \mu_0 \epsilon_0 \partial_t \mathbf{E}$
\implies The	refr	<u>ac</u> tive index:
$N = \sqrt{1}$	- <u>-</u>	$\frac{n^2 p^2}{\omega^2} \approx 1 - \frac{n e^2}{2 \varepsilon_0 m \omega^2}$

The phase shift:

$$\Delta \varphi = -\frac{e^2}{2c\varepsilon_0 m\omega} \int_0^L n(I) d$$

credit:underthehood.blogwyrm:PlasmaWaves, Bartels:IPPlectures, MatenaMT

Plasma Oscillations

- Outside agency (e.g. EM wave) cause all of the electrons to be displaced by the very small amount of Δx.
- Equation of motion: $m_{tot} \frac{d^2}{dt^2} \Delta x = q_{tot} E$, where $m_{tot} = m_e n_0 V$.
- Integral form of the Gauss law: $EA = \frac{en_0 A \Delta x}{\epsilon_0}$ gives: $E = \frac{en_0}{\epsilon_0} \Delta x$.
- Then: $m_e n_0 V \frac{d^2}{dt^2} \Delta x = -e n_0 V \frac{e n_0}{\epsilon_0} \Delta x$, typical LHO form with oscillation at electron plasma frequency $\omega_{pe} = \sqrt{\frac{e^2 n_0}{m_e \epsilon_0}}$.

credit:underthehood.blogwyrm:PlasmaOscillation

The index of refraction

- is always smaller than 1,
- decreases as density increases,
- wave only propagates when $\omega > \omega_{pe}$,

$$n_c = \frac{\varepsilon_0 m}{e^2} \omega^2$$

which is the highest density that allows the wave to propagate.

Scheme

The GOLEM tokamak interferometry HW

Oscilloscope record of interferometry

The discharge - quasistationary phase

Table of Contents

1 Specific technological issues

2 Diagnostics of Fusion Plasmas

- Electromagnetic measurements
- Passive radiation measurements
- Active radiation measurements
- Particle measurements

3 Data handling @ the GOLEM tokamak

4 PRA2 #13 - The Electron energy confinement time calculation

5 Appendix

Particle flux measurement with Langmuir probes

A small, conductive component in direct contact with plasma.

- The measurement output is determined: i) shape: Langmuir probe, ball-pen probe, tunnel probe, Katsumoto probe, Mach probe ... ii) by the applied voltage.
- Measurement only at the edge of the plasma.
- Measured quantities: plasma potential, electron temperature and density, electric fields, electron distribution functions

A set of Langmuir probes: Rake probe

Volt-amper characteristics of the Langmuir probe

VA characteristics at the GOLEM tokamak

Table of Contents

- 1 Specific technological issues
- 2 Diagnostics of Fusion Plasmas
- 3 Data handling @ the GOLEM tokamak
- 4 PRA2 #13 The Electron energy confinement time calculation
- 5 Appendix

GOLEM **basic** Data Acquisition System (DAS)

- $\bigcup_{I, U_{B_t}, U_{I_{p+ch}}, I_{rad}}$
- $\Delta t = 1 \mu s / f = 1 M Hz$.
- Integration time = 40 ms, thus DAS produces 6 colums x 40000 rows data file.
- Discharge is triggered at 5th milisecond after DAS to have a zero status identification.

Data file example, DAS $\Delta t = 1 \mu s/f = 1 \textit{MHz}$ (neutral gas into plasma breakdown focused)

t	$\approx U_l$	$\approx U_{dB_T}$	$\approx U_{d(I_{p+ch})}$	$\approx I_{rad}$
		dt	dt	
:	:	:	:	:
:	:	:	:	:
first	\approx	7405	lines	
:	:	:	:	:
:	:	:	:	:
0.007383	1.53931	0.390015	0.048828	0.001831
0.007384	1.53686	0.395508	0.067749	0.00061
0.007385	1.54053	0.391235	0.079956	0.00061
0.007386	1.53686	0.38147	0.072632	0
0.007387	1.54297	0.397949	0.059204	0.00061
0.007388	1.54053	0.384521	0.05249	0.00061
0.007389	1.54053	0.39856	0.068359	0.001221
0.00739	1.54053	0.393677	0.082397	0.001221
0.007391	1.53809	0.38208	0.072632	0.001221
0.007392	1.54297	0.400391	0.056763	0.00061
0.007393	1.54419	0.383911	0.053101	0.00061
0.007394	1.53931	0.397339	0.068359	0.001221
0.007395	1.54297	0.391846	0.084229	0.00061
0.007396	1.54541	0.394897	0.074463	0.00061
0.007397	1.54297	0.388184	0.056763	0.001221
0.007398	1.54297	0.391846	0.056763	0.00061
0.007399	1.54297	0.394287	0.06897	0.00061
:	:	:	:	:
:	:	:	:	:
next	\approx	32500	lines	
:	:	:	:	:
:	:	:	:	:

All the recorded data and the settings for each discharge (shot) are available at the GOLEM website. The root directory for the files is:

http://golem.fjfi.cvut.cz/shots/<#ShotNo>/

The most recent discharge has the web page:

http://golem.fjfi.cvut.cz/shots/0

Particular data from DAS or specific diagnostics have the format:

http://golem.fjfi.cvut.cz/utils/data/<#ShotNo>/<identifier>

An overview of available data with identifiers, units, description, etc. for each discharge is at

http://golem.fjfi.cvut.cz/shots/<#ShotNo>/Data.php

Matlab

```
ShotNo=22471:
baseURL='http://golem.fjfi.cvut.cz/utils/data/';
identifier='loop_voltage';
%Create a path to data
dataURL=strcat(baseURL, int2str(ShotNo), '/', identifier);
% Write data from GOLEM server to a local file
urlwrite(dataURL, identifier);
% Load data
data = load(identifier, '\t');
% Plot and save the graph
plot(data(:,1)*1000, data(:,2), '.');
xlabel('Time_[ms]')
ylabel('U_{I_{\sim}}[V]')
saveas(gcf, 'plot', 'jpeg');
exit:
```

```
import numpy as np
import matplotlib.pyplot as plt
shot no = 22471
identifier = "loop_voltage"
\# create data cache in the 'golem_cache' folder
ds = np.DataSource('golem_cache')
#Create a path to data and download and open the file
base_url = "http://golem.fjfi.cvut.cz/utils/data/"
data_file = ds.open(base_url+str(shot_no)+'/'+identifier)
#Load data from the file and plot to screen and to disk
data = np.loadtxt(data_file)
plt.plot(data[:,0], data[:,1]) #1. column vs 2. column
plt.savefig('graph.jpg')
plt.show()
```

Gnuplot

```
set macros:
ShotNo = "22471";
baseURL = "http://golem.fjfi.cvut.cz/utils/data/";
identifier = "loop_voltage";
#Create a path to data
DataURL= "@baseURL@ShotNo/@identifier";
#Write data from GOLEM server to a local file
!wget -q @DataURL;
#Plot the graph from a local file
set datafile separator "\t";
plotstyle = "with_lines_linestyle_-1"
plot 'loop_voltage' using 1:2 @plotstyle:
exit:
```

command line execution: # gnuplot Uloop.gp - persist GNU Wget is a free software package for retrieving files using HTTP, HTTPS and FTP, the most widely-used Internet protocols. It is a non-interactive commandline tool, so it may easily be called from scripts, cron jobs, terminals without X-Windows support, etc.

- Runs on most UNIX-like operating systems as well as Microsoft Windows.
- Homepage: http://www.gnu.org/software/wget/
- Basic usage:
 - To get U_l: wget http: //golem.fjfi.cvut.cz/utils/data/<#ShotNo>/loop_voltage
 - To get whole shot: wget -r -nH -cut-dirs=3 -no-parent -l2 -Pshot http://golem.fjfi.cvut.cz/shots/<#ShotNo>

Excel

 $\mathsf{File}{\rightarrow}\mathsf{Open}{\rightarrow}$

http://golem.fjfi.cvut.cz/utils/data/<#ShotNo>/<identifier>

Spredsheets (Excel and others)

are not recommended, only tolerated.

Table of Contents

- 1 Specific technological issues
- 2 Diagnostics of Fusion Plasmas
- 3 Data handling @ the GOLEM tokamak
- 4 PRA2 #13 The Electron energy confinement time calculation
- 5 Appendix

Energy balance of the house

Energy balance of the tokamak

Under the assumption of a simplified power balance, the heating power P_H is partially absorbed in the plasma and leads to an increase of the plasma energy W_p and the rest is lost as the loss power P_L

$$P_H = \frac{dW_p}{dt} + P_L$$

The energy confinement time is defined as the characteristic time scale of the exponential decay of the plasma energy W_p due to the loss power P_L :

$$\tau_E = \frac{W_p}{P_L} = \frac{W_p}{P_H - dW_p/dt}$$

Choosing the quasistationary phase of the plasma discharge, where $\frac{dW_p}{dt} = 0$ gives:

$$\tau_{E}(t) = \frac{W_{p}(t)}{P_{H}(t)}$$

The discharge - quasistationary phase

On the GOLEM tokamak the only heating mechanism of the plasma is ohmic heating P_{OH} resulting from the plasma current I_p flowing in a conductor with finite resistivity R_p . The time dependence of the ohmic heating power can be calculated as:

$$P_H(t) = P_{OH}(t) = R_p(t) \cdot I_p^2(t)$$

The global plasma energy content W_p can be simply calculated from the temperature estimation $T_e(0, t)$, average density n_e and plasma volume V_p , based on the ideal gas law, taking into account the assumed

$${\mathcal T}_e(r,t)={\mathcal T}_e(0,t)\left(1-rac{r^2}{a^2}
ight)^2$$
 temperature profile:

$$W_p(t) = V_p \frac{n_e k_B T_e(0,t)}{3}.$$

The information that the magnetic field reduces the degrees of freedom of the particles to two has been used to derive this formula.

•
$$V_p \approx 80$$
 l

The time evolution of the central electron temperature $T_e(0, t)$ is calculated from equation based on Spitzer's resistivity formula (see eg. [Brotankova, J., 2009],[Wesson, 2004]):

$$T_{e}(0,t) = \left(\frac{R_{0}}{a^{2}} \frac{8Z_{eff.}}{1544} \frac{1}{R_{p}(t)}\right)^{2/3}, [eV; m, \Omega]$$

For particular case of the GOLEM tokamak it says:

$$T_e(0,t) = 0.9 \cdot \left(\frac{I_p(t)}{U_l(t)}\right)^{2/3}, [eV; A, V]$$

Towards Electron energy confinement time τ_E

Hands on the GOLEM tokamak - equipment

The GOLEM tokamak - standard diagnostics

Hands on the GOLEM tokamak

- Laboratory Practice for Basic course of Physics 2015-19 (CT University Bachelor level).
- Advanced plasma training course 2014-19 (CT University Master level).
- Week of scientists 2013-19 (Czech republic High school level).
- International Golem Training Course 2013,2019 (Master and PhD level).

Vacuum x Plasma discharge @ Oscilloscope

Towards Electron energy confinement time τ_E

Možno si odnést, či doporučené otázky ke zkoušce.

- Tokamak, jeho mise, základní princip.
- Základy diagnostiky vysokoteplotního plazmatu.
- Základy real-time řízení experimentu.
- Princip měření doby udržení energie v tokamacích.

Thank you for your attention

Tokamak TM1 @Kurchatov Institute near Moscow ~1960-1977 Tokamak CASTOR @Institue of Plasma Physics, Prague 1977-2007 Tokamak GOLEM @Czech Technical University, Prague 2007-

SCIENCE

SCIENCE & education EDUCATION & science

... with the biggest control room in the world ...

Financial support highly appreciated:

CTU RVO68407700, SGS 17/138/OHK4/2T/14, GAČR GA18-02482S, EU funds CZ.02.1.01/0.0/0.0/16_019/0000778 and CZ.02.2.69/0.0/0.0/16_027/0008465, IAEA F13019, FUSENET and EUROFUSION.

Students, teachers, technicians (random order):

Vladimír Fuchs, **Ondřej Grover**, Jindřich Kocman, Tomáš Markovič, Michal Odstrčil, Tomáš Odstrčil, Gergo Pokol, Igor Jex, Gabriel Vondrášek, František Žácek, Lukáš Matěna, **Jan Stockel**, Jan Mlynář, Jaroslav Krbec, Radan Salomonovič, Vladimír Linhart, **Kateřina Jiráková**, **Ondřej Ficker**, Pravesh Dhyani, Juan, Jaroslav Čeřovský, Bořek Leitl, Martin Himmel, **Petr Švihra**.

Table of Contents

- 1 Specific technological issues
- 2 Diagnostics of Fusion Plasmas
- 3 Data handling @ the GOLEM tokamak
- 4 PRA2 #13 The Electron energy confinement time calculation
- 5 Appendix

References I

- Alfa (2018). Automated line fitting algorithm. https://www.nebulousresearch.org/codes/alfa/. [Online; accessed 20-December-2018].
- Biel, W. (2014). Diagnostics and control of fusion plasmas. http://www.dpg-physik.de/dpg/pbh/aktuelles/pdf/Biel1.pdf. [Online; accessed December 16, 2018].
- Brotankova, J. (PhD. thesis 2009). Study of high temperature plasma in tokamak-like experimental devices.
- F4E (2007). Fusion for energy. http://fusionforenergy.europa.eu. [Online; accessed December 16, 2018].
- H.-W.Bartels at al. (1993). Ipp summer university for plasma physics. lecture notes.
- J.S. Kaastra, F.B.S. Paerels, F. D. S. S. P. R. (2008). Thermal radiation processes. *Space Science Reviews*, 134(1-4):(155–190).
- Kocman, J. (Master thesis 2015). Řízení polohy plazmatického prstence na tokamaku golem. http://golem.fjfi.cvut.cz/wiki/Library/GOLEM/MastThesis/15KocmanJindrich.pdf.
- Lumen (2015). Boundless physics. https://courses.lumenlearning.com/boundless-physics. [Online; accessed December 16, 2018].
- Mlynář, J. personal communications.
- Nash, P. (2015). High-Vacuum Technology Course. [Online; accessed December 16, 2018].
- PEM (2018). What is a rogowski coil? http://www.pemuk.com/how-it-works.aspx. [Online; accessed 4-January-2019].

References II

Stockel, J. personal communications.

Svoboda, V., Huang, B., Mlynar, J., Pokol, G., Stockel, J., and Vondrasek, G. (2011). Multi-mode Remote Participation on the GOLEM Tokamak. *Fusion Engineering and Design*, 86(6-8):1310–1314.

Svoboda, V., Kocman, J., Grover, O., Krbec, J., and Stockel, J. (2015). Remote operation of the vertical plasma stabilization @ the GOLEM tokamak for the plasma physics education. *Fusion Engineering and Design*, 96-97:974–979.

Tokamak GOLEM contributors (2007). Tokamak GOLEM at the Czech Technical University in Prague. http://golem.fjfi.cvut.cz. [Online; accessed December 13, 2019].

Unknown (2016). Waves in plasmas. https://slideplayer.com/slide/4645607/. [Online; accessed 2-January-2019].

Wesson, J. (Third Edition, 2004). Tokamaks, volume 118 of International Series of Monographs on Physics. Oxford University Press Inc., New York.

Wikipedia contributors (2018). PID controller — Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/w/index.php?title=PID_controller&oldid=873472346. [Online; accessed 21-December-2018].