Source code :: cwt

[Return]
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
## This code is written by Davide Albanese, <albanese@fbk.eu> and
## Marco Chierici, <chierici@fbk.eu>.
## (C) 2008 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## See: Practical Guide to Wavelet Analysis - C. Torrence and G. P. Compo.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

from numpy import *
import _extend

__all__ = ["cwt", "icwt", "angularfreq", "scales", "compute_s0"]


def angularfreq(N, dt):
    """Compute angular frequencies.

    :Parameters:   
      N : integer
        number of data samples
      dt : float
        time step
    
    :Returns:
      angular frequencies :  1d numpy array
    """

    # See (5) at page 64.
    
    N2 = N / 2.0
    w = empty(N)

    for i in range(w.shape[0]):       
        if i <= N2:
            w[i] = (2 * pi * i) / (N * dt)
        else:
            w[i] = (2 * pi * (i - N)) / (N * dt)

    return w


def scales(N, dj, dt, s0):
    """Compute scales.

    :Parameters:
      N : integer
        number of data samples
      dj : float
        scale resolution
      dt : float
        time step

    :Returns:
      scales : 1d numpy array
        scales
    """

    #  See (9) and (10) at page 67.

    J = floor(dj**-1 * log2((N * dt) / s0))
    s = empty(J + 1)
    
    for i in range(s.shape[0]):
        s[i] = s0 * 2**(i * dj)
    
    return s


def compute_s0(dt, p, wf):
    """Compute s0.
    
    :Parameters:    
      dt :float
        time step
      p : float
        omega0 ('morlet') or order ('paul', 'dog')
      wf : string
        wavelet function ('morlet', 'paul', 'dog')

    :Returns:    
      s0 : float
    """
    
    if wf == "dog":
        return (dt * sqrt(p + 0.5)) / pi
    elif wf == "paul":
        return (dt * ((2 * p) + 1)) / (2 * pi)
    elif wf == "morlet":
        return (dt * (p + sqrt(2 + p**2))) / (2 * pi)
    else:
        raise ValueError("wavelet '%s' is not available" % wf)


def cwt(x, dt, dj, wf="dog", p=2, extmethod='none', extlength='powerof2',res = 2000, fmin = 0, fmax = inf):
    """Continuous Wavelet Tranform.

    :Parameters:   
      x : 1d numpy array
        data
      dt : float
         time step
      dj : float
         scale resolution (smaller values of dj give finer resolution)
      wf : string ('morlet', 'paul', 'dog')
         wavelet function
      p : float
        wavelet function parameter
      extmethod : string ('none', 'reflection', 'periodic', 'zeros')
                indicates which extension method to use
      extlength : string ('powerof2', 'double')
                indicates how to determinate the length of the extended data
            
    :Returns:
      (X, scales) : (2d numpy array complex, 1d numpy array float)
                  transformed data, scales

    Example:

    >>> import numpy as np
    >>> import mlpy
    >>> x = np.array([1,2,3,4,3,2,1,0])
    >>> mlpy.cwt(x=x, dt=1, dj=2, wf='dog', p=2)
    (array([[ -4.66713159e-02 -6.66133815e-16j,
             -3.05311332e-16 +2.77555756e-16j,
              4.66713159e-02 +1.38777878e-16j,
              6.94959463e-01 -8.60422844e-16j,
              4.66713159e-02 +6.66133815e-16j,
              3.05311332e-16 -2.77555756e-16j,
             -4.66713159e-02 -1.38777878e-16j,
             -6.94959463e-01 +8.60422844e-16j],
           [ -2.66685280e+00 +2.44249065e-15j,
             -1.77635684e-15 -4.44089210e-16j,
              2.66685280e+00 -3.10862447e-15j,
              3.77202823e+00 -8.88178420e-16j,
              2.66685280e+00 -2.44249065e-15j,
              1.77635684e-15 +4.44089210e-16j,
             -2.66685280e+00 +3.10862447e-15j,
             -3.77202823e+00 +8.88178420e-16j]]), array([ 0.50329212,  2.01316848]))
    """

    #x -=  mean(x)
    lenght = x.shape[0]
    
    if extmethod != 'none':
        x = _extend.extend(x, method=extmethod, length=extlength)
   
    w = angularfreq(x.shape[0], dt)
    s0 = compute_s0(dt, p, wf)
    s = scales(lenght, dj, dt, s0)
    freq = (p + sqrt(2.0 + p**2))/(4*pi * s)	
   
    ind = where((freq>fmin)&(freq<fmax))
    s = s[ind]
    x = fft.rfft(x, axis=0)
    
    step  = max(int(lenght/res),1)
    spec = zeros((len(s),len(w[0:lenght:step]) ),dtype=complex)
    stmp = zeros(1)
    #wavelet = zeros((len(w)),dtype=complex )
    wft = zeros((len(w)),dtype=complex )
    
    
    for i in range(len(s)):
	interv = where((abs(s[i]*w[0:len(w)/2]-p))<3)
	wavelet = (1+sign(w[interv]))*exp(-(s[i]*w[interv]-p)**2/2)*sqrt(abs(s[i])/dt)
	#wavelet[interv] = waveletb.morletft(stmp, w[interv], p, dt, norm = True)
	wft[interv] = x[interv]*wavelet
	wft = fft.ifft(wft )
        spec[i,:] =  wft[0:lenght:step]
	wft[:] = 0

    return spec, s


def icwt(X, dt, dj, wf = "dog", p = 2, recf = True):
    """Inverse Continuous Wavelet Tranform.

    :Parameters:
      X : 1d numpy array
        transformed data
      dt : float
         time step
      dj : float
         scale resolution (smaller values of dj give finer resolution)
      wf : string ('morlet', 'paul', 'dog')
         wavelet function
      p : float
        wavelet function parameter    

          * morlet : 2, 4, 6
          * paul :   2, 4, 6
          * dog :    2, 6, 10

      recf : bool
           use the reconstruction factor (:math:`C_{\delta} \Psi_0(0)`)

    :Returns:
      x : 1d numpy array

    Example:

    >>> import numpy as np
    >>> import mlpy
    >>> X = np.array([[ -4.66713159e-02 -6.66133815e-16j,
    ...                -3.05311332e-16 +2.77555756e-16j,
    ...                 4.66713159e-02 +1.38777878e-16j,
    ...                 6.94959463e-01 -8.60422844e-16j,
    ...                 4.66713159e-02 +6.66133815e-16j,
    ...                 3.05311332e-16 -2.77555756e-16j,
    ...                -4.66713159e-02 -1.38777878e-16j,
    ...                -6.94959463e-01 +8.60422844e-16j],
    ...              [ -2.66685280e+00 +2.44249065e-15j,
    ...                -1.77635684e-15 -4.44089210e-16j,
    ...                 2.66685280e+00 -3.10862447e-15j,
    ...                 3.77202823e+00 -8.88178420e-16j,
    ...                 2.66685280e+00 -2.44249065e-15j,
    ...                 1.77635684e-15 +4.44089210e-16j,
    ...                -2.66685280e+00 +3.10862447e-15j,
    ...                -3.77202823e+00 +8.88178420e-16j]])
    >>> mlpy.icwt(X=X, dt=1, dj=2, wf='dog', p=2)
    array([ -1.24078928e+00,  -1.07301771e-15,   1.24078928e+00,
             2.32044753e+00,   1.24078928e+00,   1.07301771e-15,
            -1.24078928e+00,  -2.32044753e+00])
    """  

    rf = 1.0

    if recf == True:
        if wf == "dog"    and p == 2:
            rf = 3.13568
        if wf == "dog"    and p == 6:
            rf = 1.70508
        if wf == "dog"    and p == 10:
            rf = 1.30445
        if wf == "paul"   and p == 2:
            rf = 2.08652
        if wf == "paul"   and p == 4:
            rf = 1.22253
        if wf == "paul"   and p == 6:
            rf = 0.89730
        if wf == "morlet" and p == 2:
            rf = 2.54558
        if wf == "morlet" and p == 4:
            rf = 0.92079
        if wf == "morlet" and p == 6:
            rf = 0.58470

    s0 = compute_s0(dt, p, wf)
    s = scales(X.shape[1], dj, dt, s0)
     
    # See (11), (13) at page 68
    XCOPY = empty_like(X)
    for i in range(s.shape[0]):
        XCOPY[i] = X[i] / sqrt(s[i]) 
    x = dj * dt **0.5 * sum(real(XCOPY), axis = 0) / rf
   
    return x

Navigation