Source code :: main

[Return]
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
#!/usr/bin/env python
# -*- coding: utf-8 -*-

# Main script of the plasma position algorithm. In this script are data prepared 
# (removed false signals and integration drifts) and the resultes from Plasmposition.py are finaly plotted
#
# Autor: Tomas Odstrcil


import matplotlib 
matplotlib.rcParams['backend'] = 'Agg'
matplotlib.rc('font',  size='10')
matplotlib.rc('text', usetex=True)  # FIXME !! nicer but slower !!!


import time
cas = time.time()



from numpy import *
import os
import sys
from pygolem_lite.modules import list2array,deconvolveExp,save_adv,saveconst
from scipy.signal import  fftconvolve,gaussian
from scipy.interpolate import interpolate

from pygolem_lite import Shot
print 'including time: ',  time.time()-cas




#constants
a = 0.085		#[m]
R_0 = 0.4		#[m]
shot = Shot()['shotno']
if shot > 12079:
    calib =-array([  261,  261,  -261, 261]) #T/(V*s)
else:
    calib =-array([  261,  261,  -261, -261]) #T/(V*s)



  
def LoadData():
    Data = Shot()
    t0 = time.time()

    Bt = array(Data['toroidal_field'], copy = False).T
    Uloop = array(Data['loop_voltage'], copy = False).T
    Ip = array(Data['plasma_current'], copy = False).T

    t0 = time.time()
    gd = Shot().get_data
    das, m1  = gd('any', 'mirnov_1', return_channel = True)
    das, m5  = gd('any', 'mirnov_5', return_channel = True)
    das, m9  = gd('any', 'mirnov_9', return_channel = True)
    das, m13 = gd('any', 'mirnov_13', return_channel = True)
    t1 = time.time()

    Papouch = list2array( Data[das, [m1, m5, m9, m13]] ) #FIXME odkazuje to přímo na kanál, mělo by to odkazovat na mirnonovy cívky


    
    CD_trigger = Data['Tcd']
    BD_trigger = Data['Tbd']
    Bt_trigger = Data['Tb']
    CD_voltage = Data['Ucd']
    BD_voltage = Data['Ubd']
    Bt_voltage = Data['Ub']
    plasma_start = Data['plasma_start']
    plasma_end = Data['plasma_end']
    plasma = Data['plasma']
    if CD_voltage == 0:
	CD_trigger = nan
    if BD_voltage == 0:
	BD_trigger = nan
    if Bt_voltage == 0:
	Bt_trigger = nan


    shot = Shot()['shotno']
    return Bt,Uloop,Ip,Papouch,CD_trigger,BD_trigger, Bt_trigger,plasma_end,plasma_start, plasma,shot


def Resample(tvec,vec,t_min,t_max,n):
    
    std = (t_max-t_min)/(tvec[1]-tvec[0])/n/2
    gauss_win = gaussian(std*3,std)
    gauss_win/= sum(gauss_win)
    vec_smooth = fftconvolve(vec,gauss_win, mode = 'same')
    tvec_new = linspace(t_min,t_max,n)
    vec_new = interp(tvec_new,tvec, vec_smooth, left=0, right=None)

    #f = interpolate.interp1d(tvec,vec_smooth,bounds_error = False, fill_value = 0, copy = False)
    #vec_new = f(tvec_new)
    
    #plot(tvec_new,vec_new, '--')
    #plot(tvec,vec_smooth)
    #plot(tvec,vec)
    #show()
    return tvec_new,vec_new




def CorrectRCcircuit(tvec,sig, tau):
    
    
    N = len(sig)
    dt = (tvec[-1]-tvec[0])/N
    sig-= mean(sig)

    f = fft.fftfreq(N, d=dt)  
    fsig = fft.fft(sig)

    fsig[0] = 0   #=> mean(x) = 0

    
    
    ifac  = 1-exp(-2*pi*1j*f*dt)  #invert integ factor

    
    q = exp(-(1./tau+2*pi*1j*f)*dt)
    fexp = (1-q**(N/2-1))/(1-q)
    fexp/= fexp[0]  #cca dt/tau
    
    
    
    
    filter = ones_like(fsig)

    
    filter/= fexp#deconvolution
    
    filter[1:]/= ifac[1:]  #integration
    
    integ_sig = real(fft.ifft(fsig*filter))


    
    integ_sig -= integ_sig[0]+sig[0]
    integ_sig*= dt
    
    
    
    
    ##O(n) calculation vfor realtime aplication 
    #integ = zeros_like(sig)
    #xn = sig[0]
    #for j in xrange(step,N,step):
	#xn*= exp(-dt*step/tau)
	#deriv  = sig[j]-xn
	#integ[j] = deriv+integ[j-step]
	#xn = sig[j]
    
    #integ*= dt/tau
    
    
    return integ_sig
    
    
    
def get_position():
    from PlasmaPosition import CalcPlasmaPosition,RemoveDriftsAuto

    cas = time.time()

    Bt,Uloop,Ip,signal,CD_trigger,BD_trigger, Bt_trigger,plasma_end,plasma_start, plasma,shotno  = LoadData()

    tvec = signal[:,0]
    signal = signal[:,1:]
    t0 = tvec[0]
    dt = tvec[1]-tvec[0]
    
    #BUG 1. chanell has RC integrator
    if shotno >= 11381 and shotno <= 11837:
	signal[:,0] = CorrectRCcircuit(tvec,signal[:,0], 0.1e-3)
	
	signal[:,1:] = cumsum(signal[:,1:],axis = 0, out=signal[:,1:])*dt #možná by šla udělat nějaká lepší integrace
    else:    
	signal = cumsum(signal,axis = 0, out=signal)*dt #možná by šla udělat nějaká lepší integrace
    
    print 'load data: ',  time.time()-cas

    reduce = len(signal)/400   # calculate in 400 points
    
    if mean(abs(Uloop[:,1])) == 0 or mean(abs(Bt[:,1])) == 0 :  #selhání diagnostik
	print 'all diagnostics failured '
	return None


    #correct effects of the chamber currents  (projection constants)
    Uproj = array([-0.5e-07, -1.0e-07, -0.2e-07,-0.8e-07])
    U_loop_ds = interp(tvec, Uloop[:,0],Uloop[:,1], left=0, right=None)
    #f_uloop = interpolate.interp1d(Uloop[:,0],Uloop[:,1],bounds_error = False, fill_value = 0, copy = False)
    #U_loop_ds = f_uloop(tvec)  
    for i in range(4):
	signal[:,i]-= Uproj[i]*U_loop_ds


    Bt_crosstalk = True
    Uloop_crosstalk = False

    if abs(median(Bt[:,1])) < 0.001:
	Bt_crosstalk = False
    if abs(median(Uloop[:,1])) < 0.05:
	Uloop_crosstalk = False



    #prepare signals
    E_trigger = nanmin([CD_trigger, BD_trigger])

    #remove crosstalks+drifts
    signal,err, AutoRemoveGraph = RemoveDriftsAuto(vstack((tvec,signal.T)).T, Bt,Uloop,plasma_start,plasma_end,Bt_trigger,E_trigger)

    #now is a plasma presence is necassary
    if not plasma:
	return [AutoRemoveGraph,Bt_trigger]




    #create detectors
	  
    rho  = empty((4,1))
    zeta = empty((4,1))
    
    r_det = 0.093
    phi_det = linspace(0,1.5*pi,4 )
    
    rho[:,0]  = r_det*cos(phi_det)+R_0
    zeta[:,0] = r_det*sin(phi_det)
 
    detectorPos = hstack((rho,zeta))
    

    tvec_ds, Ip_ds =  Resample(Ip[:,0],Ip[:,1],plasma_start,plasma_end,reduce)
    detectorSignal = signal[:,1:]
    tvec = signal[:,0]

    detectorSignal_ds = list()
    for i in range(size(detectorSignal,1)):
	#print shape(tvec), shape(detectorSignal[:,i])
	tvec_ds,data_ds =  Resample(tvec,detectorSignal[:,i],plasma_start,plasma_end,reduce)
	detectorSignal_ds.append(data_ds)
    detectorSignal_ds = array(detectorSignal_ds, copy = False).T
    
    
 



    #   estimated errors
    #TODO here can by applied information about lower precision of some detector

    IpDriftError =7
    detectorDriftError = ones(4)* 1.5e-7
    
    
    detectorDriftError*= abs(array(calib))
    detectorSignal_ds*= array(calib)


    pos_tvec, position, radius, residuum, retrofit, data,chi2 = CalcPlasmaPosition(single(tvec_ds),single(detectorPos), single(detectorSignal_ds), single(detectorDriftError), single(Ip_ds), single(IpDriftError))
    
    save_adv('results/R_position', pos_tvec, position[:,0])
    save_adv('results/Z_position', pos_tvec, position[:,1])
    save_adv('results/plasma_radius', pos_tvec, radius)
    savetxt('results/R_position.txt', vstack((pos_tvec, position[:,0])).T, fmt='%.4e %.3e' )
    savetxt('results/Z_position.txt', vstack((pos_tvec, position[:,1])).T, fmt='%.4e %.2e' )
    savetxt('results/plasma_radius', vstack((pos_tvec, radius)).T, fmt='%.4e %.2e'  )
    #savetxt('results/residuum', mean(residuum), fmt='%.1e')
    saveconst('results/residuum', median(residuum/ data[:,0]**2*1e6))
    
    
    
    #f_Ip = interpolate.interp1d( Ip[:,0],Ip[:,1] , bounds_error = False, fill_value = 0,copy = False)
    Ip = interp(tvec,  Ip[:,0],Ip[:,1])
    
    return pos_tvec, position,  residuum, retrofit, single(data),single(tvec),single(Ip), IpDriftError, single(detectorSignal), detectorDriftError, plasma_start, plasma_end,Bt_trigger,chi2,AutoRemoveGraph


def graphs(  inputs , filetype = 'png' ):

    if len(inputs) == 2: #vacuum discharge
	[AutoRemoveGraph,Bt_trigger] = inputs
    else:
	[pos_tvec,position,residuum,retrofit,data,tvec,Ip,IpDriftError, detectorSignal,detectorDriftError,plasma_start,plasma_end,Bt_trigger,chi2,AutoRemoveGraph] = inputs 

        #===============  Plot results======================
    import matplotlib 
    matplotlib.rcParams['backend'] = 'Agg'
    matplotlib.rc('font',  size='10')
    matplotlib.rc('text', usetex=True)  # FIXME !! nicer but slower !!!
    import matplotlib.pyplot as plt
	


    class MyFormatter(plt.ScalarFormatter): 
	def __call__(self, x, pos=None): 
	    if pos==0: 
		return '' 
	    else: return plt.ScalarFormatter.__call__(self, x, pos)  
	
    
     
    #plot graph from auto removing   of crosstalks  

    t1 = time.time() 
    (frames, vlines,hlines,rectangles) = AutoRemoveGraph

    fig = plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')
    plt.subplots_adjust(hspace=0, wspace = 0)
    
    for i,frame in enumerate(frames):
	(t, curves, ytext,text) = frame
	
	ax = fig.add_subplot(len(frames),1,i+1)
	ax.xaxis.set_major_formatter( plt.NullFormatter() )
	ax.yaxis.set_major_formatter( MyFormatter() )
	ax.text(.05,.1,text,horizontalalignment='left',verticalalignment='bottom',transform=ax.transAxes,backgroundcolor = 'w')
	
	for curve in curves:
	    (y,label, linestyle) = curve
	    plt.plot(t,y, linestyle , label = label)
	
	for hline in hlines:
	    (y0,linestyle) =  hline
	    plt.axhline(y = y0,linestyle = linestyle)
	for vline in vlines:
	    (x0,linestyle) =  vline
	    plt.axvline(x = x0,linestyle = linestyle)
	plt.ylabel(ytext)

	plt.axis('tight')
	plt.xlim(Bt_trigger*1000, None)
	(y_min,y_max) = plt.ylim()
    

	for (x_min,x_max) in rectangles:
	    r = plt.Rectangle((x_min, y_min),x_max-x_min,y_max-y_min)
	    r.set_clip_box(ax.bbox)
	    r.set_alpha(0.05)
	    ax.add_artist(r)
	    
    handles, labels = ax.get_legend_handles_labels()
    handles.append(r)
    labels.append('Minimized interval')
    ax.xaxis.set_major_formatter( plt.ScalarFormatter() )

    plt.xlabel('t [ms]')
    leg = plt.legend(handles, labels,loc='best', fancybox=True)
    leg.get_frame().set_alpha(0.5)
    plt.savefig('./graphs/signal_correction.'+filetype,bbox_inches='tight')
    plt.close()

    print ' plot graph from auto removing   of crosstalks   ',time.time()-t1
	

    if len(inputs) == 2:  #no plasma
	return 

    
    n_det = size(detectorSignal,1)

    t0 = time.time()

    t = time.time()   
    
    
    
    #plot position
    fig = plt.figure(num=None, figsize=(10, 3), dpi=80, facecolor='w', edgecolor='k')
    plt.plot(pos_tvec*1e3, (position[:,0]-0.4)*100,'b', label = 'R-R$_0$', linewidth=0.5)
    plt.plot(pos_tvec*1e3, position[:,1]*100,'r', label = 'Z', linewidth=0.5)
    plt.axhline(y = a*100, linestyle = '--' ,label = 'limiter')
    plt.axhline(y = -a*100, linestyle = '--' )
    leg = plt.legend(loc='lower left', fancybox=True)
    leg.get_frame().set_alpha(0.7)
    plt.xlim(pos_tvec[0]*1e3, pos_tvec[-1]*1e3)
    plt.ylim(-10,10)
    plt.ylabel('R,Z [cm]')
    plt.xlabel('t [ms]')
    plt.subplots_adjust( bottom=0.2)
    plt.savefig('graphs/plasma_position.'+filetype,bbox_inches='tight')

    fig.set_figwidth(4)
    fig.set_figheight(3)
    fig.dpi = 40
    leg.get_frame().set_alpha(0)
    plt.savefig('icon.png', bbox_inches='tight', dpi= 40)
    
    
    
    plt.close()
    
        #plot position polar
    
    r = hypot(position[:,0]-0.4,position[:,1])
    phi = arctan2(position[:,1],-(position[:,0]-0.4))
    
    
    fig = plt.figure(num=None, figsize=(10, 3), dpi=80, facecolor='w', edgecolor='k')
    axL = fig.add_subplot(1,1,1)
    plt.plot(pos_tvec*1e3, r*100,'b', label='radial coordinate $\\rho$', linewidth=0.5)
    axL.set_ylabel('$\\rho$ [cm]')
    axL.set_ylim(0,10)
    axL.set_xlim(pos_tvec[0]*1e3, pos_tvec[-1]*1e3)
    axL.set_xlabel('t [ms]')
    axL.yaxis.tick_left()
    handlesL, labelsL = axL.get_legend_handles_labels()

    
    axR = fig.add_subplot(1,1,1, sharex=axL, frameon=False)
    axR.yaxis.tick_right()
    axR.yaxis.set_label_position("right")
    
    plt.plot(pos_tvec*1e3, phi,'r', label='angular coordinate $\phi$', linewidth=0.5)
    axR.set_ylabel('$\phi$ [rad]')
    axR.set_xlim(pos_tvec[0]*1e3, pos_tvec[-1]*1e3)
    axR.set_ylim(-pi,pi)
    handlesR, labelsR = axR.get_legend_handles_labels()
    handles = hstack((handlesL,handlesR))
    labels = hstack((labelsL,labelsR))

    leg = axL.legend(handles,labels,loc='lower left', fancybox=True)
    
    #leg = plt.legend(loc='lower left', fancybox=True)
    leg.get_frame().set_alpha(0.7)
    #plt.ylim(-10,10)
    #plt.xlabel('t [ms]')
    plt.subplots_adjust( bottom=0.2)
    fig.savefig('graphs/plasma_position_polar.'+filetype,bbox_inches='tight')

    #fig.set_figwidth(4)
    #fig.set_figheight(3)
    #fig.dpi = 40
    #leg.get_frame().set_alpha(0)
    #plt.savefig('icon.png', bbox_inches='tight', dpi= 40)
    
    
    
    plt.close()
    
    print 'plot position ',time.time()-t
    t = time.time()
    
    
    #plot residuum
    fig = plt.figure(num=None, figsize=(10, 3), dpi=80, facecolor='w', edgecolor='k')
    plt.semilogy(pos_tvec*1e3, residuum/ data[:,0]**2*1e6, 'r',  label = 'residuum of the fit/$I_p^2$')
    plt.axhline(y = 10)
    plt.axhline(y = 1e2)
    plt.text(mean(pos_tvec*1e3),3 , r'reliable fit', color='k')
    plt.text(mean(pos_tvec*1e3),50 , r'considerable fit', color='k')
    plt.text(mean(pos_tvec*1e3),1e3 , r'poor fit', color='k')

    plt.xlim(pos_tvec[0]*1e3, pos_tvec[-1]*1e3)

    plt.ylim(1,1e4)
    plt.xlabel('t [ms]')
    plt.ylabel('SSE/$I^2_p$ [kA$^{-2}$]')
    plt.subplots_adjust( bottom=0.2)
    leg = plt.legend(loc='upper left', fancybox=True)
    leg.get_frame().set_alpha(0.5)
    plt.savefig('graphs/residuum.'+filetype, bbox_inches='tight')

    plt.close()
    
    print 'plot residuum ',time.time()-t
    t = time.time()

    
    
    cas = time.time()

    
    
    # plot plasma radius
    
    t = time.time()
    # plot plasma radius
    radius = a-sqrt((position[:,0]-0.4)**2+position[:,1]**2)
    fig = plt.figure(num=None, figsize=(10, 3), dpi=80, facecolor='w', edgecolor='k')
    plt.plot(pos_tvec*1e3, radius*100,'b', label = 'Plasma radius', linewidth=0.5)
    plt.xlim(pos_tvec[0]*1e3, pos_tvec[-1]*1e3)
    plt.ylim(0,10)
    plt.axhline(y = a*100, linestyle = '--' ,label = 'limiter')
    plt.ylabel('r [cm]')
    plt.xlabel('t [ms]')

    leg = plt.legend(loc='upper right', fancybox=True)
    leg.get_frame().set_alpha(0.7)
    plt.subplots_adjust( bottom=0.2)
    plt.savefig('graphs/plasma_radius.'+filetype,bbox_inches='tight')

    plt.close()
    
    
    print ' plasma radius ',time.time()-t
    t = time.time()
    
    #plot raw data
    fig = plt.figure(num=None, figsize=(10, 3), dpi=80, facecolor='w', edgecolor='k')
    plt.plot(tvec[:-50]*1000,Ip[:-50]/IpDriftError,'-.', label = '$I_p$') 
    for i in range(4):
	plt.plot(tvec*1e3,detectorSignal[:,i]/detectorDriftError[i]*calib[i], label = 'mc'+str(i*4+1), linewidth=0.5)
    plt.axvline(x = plasma_start*1000, linestyle= '--')
    plt.axvline(x = plasma_end*1000, linestyle = '--')
    plt.axhline(y = 0, linestyle = '-.')
    plt.xlabel('t [ms]')
    plt.ylabel('signal/estimated error [-]')
    leg = plt.legend(loc='upper left', fancybox=True)
    leg.get_frame().set_alpha(0.7)
    plt.subplots_adjust( bottom=0.2)
    plt.axis('tight')
    plt.xlim(Bt_trigger*1000, min(1000*plasma_end+5, 40))
    plt.ylim(-10,None)

    plt.savefig('graphs/preprocesed_signal.'+filetype,bbox_inches='tight')
    
    print ' plot raw data',time.time()-t

    plt.close('all')    
     


    t = time.time()
  


    ## plot plasma profile R,Z
    #time_horizont_profile = empty((50,size(data,0)))
    #time_vertical_profile = empty((50,size(data,0)))
    #x = linspace(-a,a,50)
    #for i in range(size(data,0)):
	#circle = 1-((x-position[i,0]+0.4)/radius[i])**2
	#circle*= (1+sign(circle))/2
	#time_horizont_profile[:,i] = sqrt(circle)
    #for i in range(size(data,0)):
	#circle = 1-((x-position[i,1])/radius[i])**2
	#circle*= (1+sign(circle))/2
	#time_vertical_profile[:,i] = sqrt(circle)

    #fig = figure(num=None, figsize=(10, 3), dpi=80, facecolor='w', edgecolor='k')
    #pcolor( pos_tvec*1e3, (x+0.4)*100, time_horizont_profile)
    #xlabel('t [ms]')
    #ylabel( 'R [cm]')
    #axis('tight')
    #subplots_adjust( bottom=0.2)
    #savefig('graphs/plasma_profile_r.png')
    #close()


    #fig = figure(num=None, figsize=(10, 3), dpi=80, facecolor='w', edgecolor='k')
    #pcolor( pos_tvec*1e3, x*100, time_vertical_profile)
    #xlabel('t [ms]')
    #ylabel( 'Z [cm]')
    #axis('tight')
    #subplots_adjust( bottom=0.2)
    #savefig('graphs/plasma_profile_z.png')
    #close()


    #plot retrofit  
    from scipy.stats.mstats  import mquantiles

    fig = plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')
    plt.subplots_adjust(hspace=0, wspace = 0)
    c = ('r', 'g', 'b', 'y')
    y_min_lim = amin(data[:,1:])
    y_max_lim = amax(data[:,1:])

    for i in range(1,n_det+1):
	ax = fig.add_subplot(n_det+1,1,i)
	ax.xaxis.set_major_formatter( plt.NullFormatter() )
	ax.yaxis.set_major_formatter( MyFormatter() )
	plt.plot(pos_tvec*1e3,     data[:,i]/data[:,0]*1e6, c[i%4],  label = 'mc'+str((i-1)*4+1)+'/I$_p$')
	plt.plot(pos_tvec*1e3, retrofit[:,i]/data[:,0]*1e6, c[i%4]+'-.',  label = 'retrofit')
	
	ax.text(.05,.1,'$\\chi^2$ = %2.1f'% chi2[i],horizontalalignment='left',verticalalignment='bottom',transform=ax.transAxes)

	leg = plt.legend(loc='upper left', fancybox=True)
	leg.get_frame().set_alpha(0.5)
	data_max = mquantiles(data[:,i]/data[:,0]*1e6, 0.95)*2

	plt.ylim(0, data_max)
	plt.ylabel('mc'+str((i-1)*4+1)+'/$I_p$ [mT/kA]')


    ax = fig.add_subplot(n_det+1,1,n_det+1)
    plt.plot(pos_tvec*1e3,     ones(size(data,0)),   label = 'I$_p$/I$_p$')
    plt.plot(pos_tvec*1e3,     retrofit[:,0]/data[:,0],   '--', label = 'retrofit')
    ax.text(.05,.1,'$\\chi^2$ = %2.1f'% chi2[0],horizontalalignment='left',verticalalignment='bottom',transform=ax.transAxes)

    leg = plt.legend(loc='upper left', fancybox=True)
    leg.get_frame().set_alpha(0.5)
    plt.ylim(0,2)
    plt.ylabel('$I_p/I_p$ [-]')
    plt.xlabel('t [ms]')
    plt.savefig('./graphs/retrofit.'+filetype,bbox_inches='tight')

    plt.close()


    print 'retrofit  ',time.time()-t
    t = time.time()
    

    
    #plot animation -- slow!!!
    #print "plotting animation" 
    #import MagFieldProfileGen
    #MagFieldProfileGen.PlotProfile(pos_tvec,data[:,0],position, 'animation')
    
    print 'graphs plotted in %g s' % (time.time()-t0)

def main():
    
    for path in ['graphs', 'results','constants' ]:
	if not os.path.exists(path):
	    os.mkdir(path)
	    
    if sys.argv[1] ==  "analysis":
	out = get_position()
	save('out', out)

    if sys.argv[1] ==  "plots":
	out = load('out.npy')
	os.remove('out.npy')
	graphs(out, 'png')
	saveconst('status', 0)



if __name__ == "__main__":
    main()
    	 

Navigation

«