1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
import matplotlib
matplotlib.rcParams['backend'] = 'Agg'
matplotlib.rc('font', size='10')
matplotlib.rc('text', usetex=True) # FIXME !! nicer but slower !!!
from matplotlib.pyplot import *
import os
from scipy.signal import fftconvolve
from multiprocessing import Process, Pool, cpu_count
import time
from numpy import *
from CMWT import *
from SoundGenerator import *
from pygolem_lite import Shot
from pygolem_lite.modules import list2array,deconvolveExp,save_adv,saveconst
from scipy.stats.mstats import mquantiles
RingCoilOrientation = (1,1,-1,-1, 1,-1,1,1,1,-1,-1,1,1,1,1,-1) #TODO důležité
MirnovCoil = (1,1,1,1)#TODO důležité
matplotlib.rcParams['xtick.direction'] = 'out'
matplotlib.rcParams['ytick.direction'] = 'out'
matplotlib.rcParams['xtick.major.size'] = 10
matplotlib.rcParams['xtick.minor.size'] = 7
matplotlib.rcParams['ytick.major.size'] = 10
matplotlib.rcParams['ytick.minor.size'] = 7
def PrepareData(data,typ):
sign = MirnovCoil #WARNING závisà na aktuálnÃm nastavenà cÃvek!!TODO dát to do externÃho configu
n = size(data, 0)
envelope = zeros(shape(data))
dt = data[0,1]-data[0,0]
n_smooth = int(0.002/dt)*2+1 #omezenà Äasového rozliÅ¡enà pro nÃzké frekvence 250Hz
for i in range(1,n):
data[i,:]*= sign[i-1]
baseline = fftconvolve((data[i,:]), ones(n_smooth)/n_smooth,mode = 'same' )
data[i,:]-= baseline
envelope[i,:] = fftconvolve(abs(data[i,:]), ones(n_smooth/10)/n_smooth/10,mode = 'same' )
plot(baseline, label = str(i))
legend()
#show()
savefig('data.png')
close()
total_envelope = mean(envelope,0)
for i in range(1,n):
data[i,:]*= total_envelope/(envelope[i,:]+1e-6)
return data
def plotData( data):
dt = data[0,1]-data[0,0]
n_smooth = 20 #omezenà Äasového rozliÅ¡enà pro nÃzké frekvence 250Hz
n = size(data, 1)
for i in range(1,size(data, 0)):
#baseline = fftconvolve((data[i,:]), ones(n_smooth)/n_smooth,mode = 'same' )
dfft = fft.rfft(data[i,:])
dfft[n/16:] = 0
difft = fft.irfft(dfft)
#plot(data[0,:], data[i,:])
plot(data[0,:], difft)
xlim(0.016, 0.0171)
ylim(-0.2, 0.2)
#show()
savefig('./graphs/raw_data.png')
close()
def loadconst(fname):
with open(fname, 'r') as fhandle:
return float(fhandle.readline()) #return the raw string
def LoadData():
Data = Shot()
gd = Shot().get_data
das, m1 = gd('any', 'mirnov_1', return_channel = True)
das, m5 = gd('any', 'mirnov_5', return_channel = True)
das, m9 = gd('any', 'mirnov_9', return_channel = True)
das, m13 = gd('any', 'mirnov_13', return_channel = True)
Papouch = list2array( Data[das, [m1, m5, m9, m13]] ).T
plasma = Data['plasma']
plasma_start = Data['plasma_start']
plasma_end = Data['plasma_end']
return Papouch,plasma_start, plasma_end,plasma
#def LoadData(path, shot_num, skip_det_num):
#path += str(shot_num)+'/'
#try:
#data = load(path+'data.npy')
#if size(data,1) == 0:
#raise "wrong data"
#except:
##print 'reload'
#data = list()
#tvec = None
#for i in range(0,16):
#print 'load NIturbo_%2.2i' %(i+1)
#if i in skip_det_num:
#data.append(zeros(shape(data[0])))
#continue
##single_data = loadtxt(path+'NIturbo_%2.2i' %(i+1)+'.asc', usecols = (1,))
#single_data = loadtxt(path+'NIturbo_%2.2i' %(i+1), usecols = (1,))
#if tvec == None:
##tvec = loadtxt(path+'NIturbo_%2.2i' %(i+1)+'.asc', usecols = (0,))
#tvec = loadtxt(path+'NIturbo_%2.2i' %(i+1), usecols = (0,))
#data.append(single_data)
#data = array(data)
#if size(data,1) == 0:
#raise "wrong data"
#data = vstack((tvec, data))
#save(path+'data', single(data))
#try:
#start = loadconst(path+'PlasmaStart')/1000
#end = loadconst(path+'PlasmaEnd' )/1000
#except:
#start = nan
#end = nan
#print start,end
#return data,start,end
#def LoadData_npz(path, shot_num, skip_det_num): #FIXME provizornà verze!!
#data = load('Nidatap.npz')
##data data['data']
#tvec = linspace(data['t_start'], data['t_end'], size(data['data'],0))
#data = data['data']
#data[:,skip_det_num] = 0
#data = vstack((tvec, data.T))
#start = data[0,8300]
#end = data[0,19260]
#return data,start,end
##def LoadData_mirnov(path, shot_num):
##path += str(shot_num)+'/'
##try:
##data = load(path+'data.npy')
##if size(data,1) == 0:
##raise "wrong data"
##if shot_num > 6000 and shot_num < 9500:
##data = data.T
##data[1:,1:] = diff(data[1:,:], axis = 1)/(data[0,1]-data[0,0])
##except:
##data = list()
##tvec = None
##for i in range(0,4):
##print 'load PapouchSt_%2.2i' %(i+1)
##single_data = loadtxt(path+'PapouchSt_%2.2i' %(i+1), usecols = (1,))
##if tvec == None:
##tvec = loadtxt(path+'PapouchSt_%2.2i' %(i+1), usecols = (0,))
##data.append(single_data)
##data = array(data)
##if size(data,1) == 0:
##raise "wrong data"
##data = vstack((tvec, data))
##save(path+'data', single(data))
##try:
##start = loadconst(path+'PlasmaStart')/1000
##end = loadconst(path+'PlasmaEnd' )/1000
##except:
##start = nan
##end = nan
##print start,end
##return data,start,end
def PlotSpec((freq, field, t, sufname ,vmin, vmax)):
fig = figure()
t = t*1000
ax = fig.add_axes([0.1, 0.1, 0.8, 0.85])
ax.set_yscale('log', nonposy='clip')
img = ax.imshow(abs(field), extent=[t[0],t[-1] ,freq[-1], freq[0]], aspect='auto',vmin=vmin, vmax=vmax)
minorLocator = MultipleLocator(1)
ax.xaxis.set_minor_locator(minorLocator)
ax.axis([t[0],t[-1] ,amin(freq), amax(freq)])
ax.set_xlabel('time [ms]')
ax.set_ylabel('Frequency [Hz]')
savefig('graphs/spectrogram'+str(sufname)+'.png',bbox_inches='tight')
close()
def CalculateSpectrogram():
print "CalculateSpectrogram"
t1 = time.time()
signal,plasma_start,plasma_end,plasma = LoadData()
#plasma = False #BUG!!!!
if not plasma:
plasma_start = 0
plasma_end = 0.04
dt = signal[0,1]-signal[0,0]
n_start = int((plasma_start - signal[0,0])/dt)
n_end= int((plasma_end -signal[0,0] )/dt)
t = signal[0,n_start:n_end]
signal = signal[1:,n_start:n_end].T
omega0 = 10#20
horiz_res = 2000
f_min = 1e3 #Hz
f_max = 200e4 #Hz
N = size(signal,0)
n_det = size(signal,1)
t2= time.time()
signal_fft = fft.rfft(signal, axis = 0)
for m in arange(-2,3):
print "wave order", m
signal_m = copy(signal_fft)
phase = arange(n_det)/double(n_det)*m
exp_phase = matrix(exp(-2*pi*1j*phase))
signal_m*= exp_phase
signal_m = sum(signal_m, axis = 1)
signal_m = fft.irfft(signal_m)
try:
soundGenerator(signal_m,2000, 'mp3/sound'+str(m))
except Exception, e:
print "sound gener. failed err:" , e.message
print 'generated sound', time.time()-t2
# !! searched MHD mdoes !!
modes = [-1,0,1,2]
spec_all = list()
scale_all = list()
print "started wavelets"
p = Pool(cpu_count())
out = p.map(NTM_CWT, [ (signal, dt, 0.005,omega0,m ,horiz_res, f_min,f_max) for m in modes ])
p.close()
p.join()
for i in range(len(modes)):
spec, scale = out[i]
spec = single(abs(spec))
spec_all.append(spec)
scale_all.append(scale)
print 'calc time', time.time()-t1
t_plot = time.time()
spec_all = array(spec_all)
scale_all = array(scale_all)
freq = (omega0 + sqrt(2.0 + omega0**2))/(4*pi * scale_all)
contrast = 10
spec_all = log(1+contrast*abs(spec_all))
vmin = amin(spec_all)
vmax = amax(spec_all)
p = Pool(cpu_count())
p.map( PlotSpec, [(freq[i,...],spec_all[i,...],t, m,vmin, vmax) for i,m in enumerate(modes) ])
p.close()
p.join()
print 'plot. time', time.time()-t_plot
def main():
for path in ['graphs', 'mp3']:
if not os.path.exists(path):
os.mkdir(path)
if sys.argv[1] == "plots":
CalculateSpectrogram()
os.system('convert -resize 150x120\! graphs/spectrogram0.png icon.png')
saveconst('status', 0)
if __name__ == "__main__":
main()
|