Source code :: cwt

[Return]
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
## This code is written by Davide Albanese, <albanese@fbk.eu> and
## Marco Chierici, <chierici@fbk.eu>.
## (C) 2008 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## See: Practical Guide to Wavelet Analysis - C. Torrence and G. P. Compo.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

from numpy import *
import _extend

__all__ = ["cwt", "icwt", "angularfreq", "scales", "compute_s0"]


def angularfreq(N, dt):
    """Compute angular frequencies.

    :Parameters:   
      N : integer
        number of data samples
      dt : float
        time step
    
    :Returns:
      angular frequencies :  1d numpy array
    """

    # See (5) at page 64.
    
    N2 = N / 2.0
    w = empty(N)

    for i in range(w.shape[0]):       
        if i <= N2:
            w[i] = (2 * pi * i) / (N * dt)
        else:
            w[i] = (2 * pi * (i - N)) / (N * dt)

    return w


def scales(N, dj, dt, s0):
    """Compute scales.

    :Parameters:
      N : integer
        number of data samples
      dj : float
        scale resolution
      dt : float
        time step

    :Returns:
      scales : 1d numpy array
        scales
    """

    #  See (9) and (10) at page 67.

    J = floor(dj**-1 * log2((N * dt) / s0))
    s = empty(J + 1)
    
    for i in range(s.shape[0]):
        s[i] = s0 * 2**(i * dj)
    
    return s


def compute_s0(dt, p, wf):
    """Compute s0.
    
    :Parameters:    
      dt :float
        time step
      p : float
        omega0 ('morlet') or order ('paul', 'dog')
      wf : string
        wavelet function ('morlet', 'paul', 'dog')

    :Returns:    
      s0 : float
    """
    
    if wf == "dog":
        return (dt * sqrt(p + 0.5)) / pi
    elif wf == "paul":
        return (dt * ((2 * p) + 1)) / (2 * pi)
    elif wf == "morlet":
        return (dt * (p + sqrt(2 + p**2))) / (2 * pi)
    else:
        raise ValueError("wavelet '%s' is not available" % wf)


def cwt(x, dt, dj, wf="dog", p=2, extmethod='none', extlength='powerof2',res = 2000, fmin = 0, fmax = inf):
    """Continuous Wavelet Tranform.

    :Parameters:   
      x : 1d numpy array
        data
      dt : float
         time step
      dj : float
         scale resolution (smaller values of dj give finer resolution)
      wf : string ('morlet', 'paul', 'dog')
         wavelet function
      p : float
        wavelet function parameter
      extmethod : string ('none', 'reflection', 'periodic', 'zeros')
                indicates which extension method to use
      extlength : string ('powerof2', 'double')
                indicates how to determinate the length of the extended data
            
    :Returns:
      (X, scales) : (2d numpy array complex, 1d numpy array float)
                  transformed data, scales

    Example:

    >>> import numpy as np
    >>> import mlpy
    >>> x = np.array([1,2,3,4,3,2,1,0])
    >>> mlpy.cwt(x=x, dt=1, dj=2, wf='dog', p=2)
    (array([[ -4.66713159e-02 -6.66133815e-16j,
             -3.05311332e-16 +2.77555756e-16j,
              4.66713159e-02 +1.38777878e-16j,
              6.94959463e-01 -8.60422844e-16j,
              4.66713159e-02 +6.66133815e-16j,
              3.05311332e-16 -2.77555756e-16j,
             -4.66713159e-02 -1.38777878e-16j,
             -6.94959463e-01 +8.60422844e-16j],
           [ -2.66685280e+00 +2.44249065e-15j,
             -1.77635684e-15 -4.44089210e-16j,
              2.66685280e+00 -3.10862447e-15j,
              3.77202823e+00 -8.88178420e-16j,
              2.66685280e+00 -2.44249065e-15j,
              1.77635684e-15 +4.44089210e-16j,
             -2.66685280e+00 +3.10862447e-15j,
             -3.77202823e+00 +8.88178420e-16j]]), array([ 0.50329212,  2.01316848]))
    """

    #x -=  mean(x)
    lenght = x.shape[0]
    
    if extmethod != 'none':
        x = _extend.extend(x, method=extmethod, length=extlength)
   
    w = angularfreq(x.shape[0], dt)
    s0 = compute_s0(dt, p, wf)
    s = scales(lenght, dj, dt, s0)
    freq = (p + sqrt(2.0 + p**2))/(4*pi * s)	
   
    ind = where((freq>fmin)&(freq<fmax))
    s = s[ind]
    x = fft.rfft(x, axis=0)
    
    step  = max(int(lenght/res),1)
    spec = zeros((len(s),len(w[0:lenght:step]) ),dtype=complex)
    stmp = zeros(1)
    #wavelet = zeros((len(w)),dtype=complex )
    wft = zeros((len(w)),dtype=complex )
    
    
    for i in range(len(s)):
	interv = where((abs(s[i]*w[0:len(w)/2]-p))<3)
	wavelet = (1+sign(w[interv]))*exp(-(s[i]*w[interv]-p)**2/2)*sqrt(abs(s[i])/dt)
	#wavelet[interv] = waveletb.morletft(stmp, w[interv], p, dt, norm = True)
	wft[interv] = x[interv]*wavelet
	wft = fft.ifft(wft )
        spec[i,:] =  wft[0:lenght:step]
	wft[:] = 0

    return spec, s

Navigation