Source code :: main

[Return]
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#!/usr/bin/python2
# -*- coding: utf-8 -*-
#fASTER VERSION THAN MAIN_2, MORE COMPLICATED


####     Microwaves 2.0
#This algorithm calculate transformation of the sin signal from microwaves density measurement to the phase/amplitude space. 
# First step of the calculation is estimate of the base frequency and calculation of the complex exponential
#with the same frequency.In the second step is signal multiplied by this exponential
#and resulting low frequency signal is smoothed over Gaussian window. Finally complex phase and amplitude are calculated.  

# Authors: Tomas Odstrcil, Ondrej Grover

from time import time
t = time()
#import matplotlib 
#matplotlib.rcParams['backend'] = 'Agg'
#matplotlib.rc('font',  size='10')
#matplotlib.rc('text', usetex=True)  # FIXME !! nicer but slower !!!
#import matplotlib.pyplot as plt

from numpy import *
from scipy.fftpack import fft, ifft,fftfreq
from scipy.signal import fftconvolve   
from pygolem_lite import save_adv,load_adv,saveconst, Shot
from pygolem_lite.modules import multiplot, get_data, paralel_multiplot
import os
import sys
from matplotlib.pylab import *

print 'include time ',time()-t 




def Demodulation(y,win,dt):
    t = time()
   
    y-= mean(y, axis = 0)
    #print mean(abs(y))
    n = size(y,0)
    N = 2 ** int(ceil(log2(n)))
    fourier = fft(y[:,0], N) #calulcate the fourier transfrom for the sine data

    #find the carrier frequency
    max_frequency_index =  argmax(abs(fourier[:N/2]))
    #max_frequency_ampl = abs(fourier[max_frequency_index])
    
    f = fftfreq(N,dt)
    s = slice(max_frequency_index-100,max_frequency_index+100)
    amplitude = abs(fourier[s])
    f_carrier = sum(f[s]*amplitude)/sum(amplitude)
    #plot(abs(fourier))
    #xlim(max_frequency_index-50,max_frequency_index+50)
    #savefig('amplitude.png')

    
    #find a unharmonics factor
    amplitude = linalg.norm(amplitude)
    #norm1 = linalg.norm(y[:,0])*sqrt(N) 
    norm1 = linalg.norm(fourier[:N/2])
    #print 
    #norm2 = linalg.norm(y[:,0])*sqrt(N) 
    ##print 

    #print norm1,norm2/sqrt(2), amplitude
    k = sqrt(norm1**2-amplitude**2)/norm1
    
    
    fourier[:] = 0 #cancel out all other frequencies
    fourier[max_frequency_index] = 1

    
    cmpl_exp = ifft(fourier)[:n]

    gauss = exp(-arange(-3*win,3*win)**2/win**2)  
    gauss/= sum(gauss)
  
    signal = list()
    for i in range(size(y,1)):
	#print norm(y[:,i])/norm(fftconvolve(y[:,i]*cmpl_exp,gauss,mode='same' ))
	signal.append(fftconvolve(y[:,i]*cmpl_exp,gauss,mode='same' ))  #it can be faster by application of the block convolution 
	#signal.append(y[:,i]*cmpl_exp)
	
    signal = array(signal, copy = False).T    

    amplitude = abs(signal)
    phase = angle(signal)
    phase = unwrap(phase, axis = 0)

	
    print 'calc. time', time()-t
    return amplitude,phase,f_carrier,k,norm1/(n/2)

def LoadData():
    Data = Shot()
    Bt_trigger = Data['Tb']

    gd = Shot().get_data
    tvec, density1  = gd('any', 'density')
    tvec, density2  = gd('any', 'density_2')
    start  = Data['plasma_start']
    end  = Data['plasma_end']

       
    return tvec, start, end, density1,density2,Bt_trigger


    
    
def graphs():
	    
    tvec, phase_pila = load_adv('results/phase_saw')
    tvec, phase_sinus = load_adv('results/phase_sinus')
    tvec, phase = load_adv('results/phase_substracted')
    tvec, amplitude = load_adv('results/amplitude_sinus')   
    tvec, n_e = load_adv('results/electron_density')

    #print mean(n_e)
   
    
    data = [[get_data([tvec,-phase_pila+mean(phase_pila)], 'phase 1', 'phase [rad]', xlim=[0,40], fmt="--"), 
	    get_data([tvec,-phase_sinus+mean(phase_sinus)], 'phase 2', 'phase [rad]', xlim=[0,40], fmt="--" ), 
	    get_data([tvec,phase], 'substracted phase', 'phase [rad]', xlim=[0,40], fmt="k" )], 
	    get_data([tvec,amplitude], 'amplitude', 'amplitude [a.u.]', xlim=[0,40],ylim=[0,None]  )]
    multiplot(data, ''  , 'graphs/demodulation', (10,6) )


    data = get_data('electron_density', 'Average electron density', '$<n_e>$ [$10^{19}\,m^{-3}$]', data_rescale=1e-19)
    multiplot(data, ''  , 'graphs/electron_density', (9,3) )
    paralel_multiplot(data, '', 'icon', (4,3), 40)

    
    

def main():



    
    for path in ['graphs', 'results' ]:
	if not os.path.exists(path):
	    os.mkdir(path)
	    
    if sys.argv[1] ==  "analysis":
	
	win = 30e-6 #[s]

	t = time()
	#if the phase difference is negativ, change order of dens1,dens2
	tvec,start, end, density2,density1,Bt_trigger = LoadData()
	dt = (tvec[-1]-tvec[0])/len(tvec)
	density1 = density1[tvec>0]
	density2 = density2[tvec>0]
	tvec = tvec[tvec>0]

	if amax(density1)  >  amax(density2):
	    density1,density2 = density2,density1
	
	
	print 'load time ', time()-t
	signals = vstack((density1,density2)).T
	amplitude,phase,f_carrier,k,norm_ampl = Demodulation(signals,win/dt,dt)  
	#signals/= amplitude
	#amplitude,phase,f_carrier = Demodulation(signals,win/dt,dt)  

	
	downsample = int(win/dt/2)    
	phase_pila = phase[::downsample,0]
	phase_sinus = phase[::downsample,1]
	tvec = tvec[::downsample]
	
	phase = phase_pila-phase_sinus
	phase -= median(phase[tvec<Bt_trigger])
	switched = sign(mean(phase[(tvec > start) & (tvec < end)])) == -1
	if switched:
	    phase *= -1   # rotate the density of cabels were switched 
	#amplitude = amplitude[::downsample,0]
	#else:
	amplitude = amplitude[::downsample,0]
	amplitude *= norm_ampl/median(amplitude)
	
	
	save_adv('results/phase_saw', tvec, phase_pila)
	save_adv('results/phase_sinus', tvec, phase_sinus)
	save_adv('results/phase_substracted', tvec, phase)
	save_adv('results/amplitude_sinus', tvec, amplitude)    


	from scipy.constants import c,m_e,epsilon_0,e

	a = 0.01   #[m]
	f_0 = 75e9 #[Hz]
	lambda_0 = c/f_0
	n_e = 4*pi*m_e*epsilon_0*c**2/(e**2*lambda_0)*phase
	save_adv('results/electron_density_line', tvec, n_e)
	saveconst('results/electron_density_mean', mean(n_e[(tvec > start) & (tvec < end)]))

	n_e /= 2*a
	save_adv('results/electron_density', tvec, n_e)


	saveconst('results/carrier_freq', abs(f_carrier))
	saveconst('results/harmonics_distortion', k)
	saveconst('results/norm_ampl', norm_ampl)
	#norm_ampl
	print 'carrier_freq ', f_carrier
	print 'harmonics_distortion ',k
	print 'norm_ampl ',norm_ampl
	
	
	


    if sys.argv[1] ==  "plots":
	graphs()
	saveconst('status', 0)



if __name__ == "__main__":
    main()
    	 

Navigation