Source code :: main2

[Return]
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/python2
# -*- coding: utf-8 -*-
#THE SIMPLEST VERSION !!!!

####     Microwaves 2.0
#This algorithm calculate transformation of the sin signal from microwaves density measurement to the phase/amplitude space. 
# First step of the calculation is estimate of the base frequency and calculation of the complex exponential
#with the same frequency.In the second step is signal multiplied by this exponential
#and resulting low frequency signal is smoothed over Gaussian window. Finally complex phase and amplitude are calculated.  

# Authors: Tomas Odstrcil, Ondrej Grover

from time import time
t = time()

from numpy import *
from numpy.fft import fft, ifft
from scipy.signal import fftconvolve   
from scipy.constants import c,m_e,epsilon_0,e
from pygolem_lite.modules import save_adv,load_adv,saveconst
from pygolem_lite import Shot
import os
import sys
print 'include time ',time()-t 



def Demodulation(data,win):
    y = data-mean(data)
    t = time()
    n = len(y)
    fourier = fft(y) #calulcate the fourier transfrom for the sine data
    
    max_frequency_index =  argmax(abs(fourier))
    max_frequency = abs(fourier[max_frequency_index])
    fourier[:] = 0 #cancel out all other frequencies
    fourier[max_frequency_index] = max_frequency

    
    cmpl_exp = ifft(fourier) 

    gauss = exp(-arange(-3*win,3*win)**2/win**2)  
    
    signal = fftconvolve(y*cmpl_exp ,gauss,mode='same' )

    amplitude = abs(signal)     
  
    phase = angle(signal)

    #remove jumps in the signal
    #for i in range(3):
    #diff_phase = diff(phase)
    #phase[1:] -= cumsum(where(abs(abs(diff_phase) - 2*pi) < 1, diff_phase, 0), out = diff_phase)
    phase = unwrap(phase)

	
    print 'demodulated  ',time()-t
        
    return amplitude,phase

def LoadData():
    Data = Shot()

    gd = Shot().get_data
    tvec, density1  = gd('any', 'density')
    tvec, density2  = gd('any', 'density_2')
       
    return tvec,density1,density2


    
    
def graphs():
    
    import matplotlib 
    matplotlib.rcParams['backend'] = 'Agg'
    matplotlib.rc('font',  size='10')
    matplotlib.rc('text', usetex=True)  # FIXME !! nicer but slower !!!
    import matplotlib.pyplot as plt
    
    class MyFormatter(plt.ScalarFormatter): 
	def __call__(self, x, pos=None): 
	    if pos==0: 
		return '' 
	    else: return plt.ScalarFormatter.__call__(self, x, pos) 
	    
	    
    tvec, phase_pila = load_adv('results/phase_saw')
    tvec, phase_sinus = load_adv('results/phase_sinus')
    tvec, phase = load_adv('results/phase_substracted')
    tvec, amplitude = load_adv('results/amplitude_sinus')   
    tvec, n_e = load_adv('results/electron_density')

    
    
    fig = plt.figure(num=None, figsize=(10, 6), dpi=80, facecolor='w', edgecolor='k')
    plt.subplots_adjust(hspace=0, wspace = 0)
    
    ax = fig.add_subplot(2,1,1)
    ax.xaxis.set_major_formatter( plt.NullFormatter() )
    ax.yaxis.set_major_formatter( MyFormatter() )
    plt.plot(tvec*1000,-phase_pila+mean(phase_pila),'--', label = 'saw phase' )
    plt.plot(tvec*1000,-phase_sinus+mean(phase_sinus),'--', label = 'signal phase')
    plt.plot(tvec*1000,phase, 'k',label = 'substracted phase')
    plt.axis('tight')

    plt.xlim(0,None)
    plt.xlabel('time [ms]')
    plt.ylabel('phase [rad]')
    leg = plt.legend(loc='best', fancybox=True)
    leg.get_frame().set_alpha(0.5)
   
    ax = fig.add_subplot(2,1,2)
    plt.plot(tvec*1000,amplitude,label = 'amplitude')
    plt.xlim(0,None)
    plt.ylim(0,None)
    leg = plt.legend(loc='best', fancybox=True)
    leg.get_frame().set_alpha(0.5)
    
    plt.ylabel('amplitude [a.u.]')
    plt.savefig('graphs/demodulation.png',bbox_inches='tight')
    plt.close()
    
    
    Data = Shot()
    plasma_start = Data['plasma_start']
    plasma_end = Data['plasma_end']
    fig = plt.figure(num=None, figsize=(10, 3), dpi=80, facecolor='w', edgecolor='k')
    plt.plot(tvec*1000,n_e/1e19,label = '$n_e$')
    plt.ylabel('$<n_e>$ [$10^{19}\,m^{-3}$]')
    plt.xlabel('time [ms]')
    plt.xlim(0,20)
    plt.ylim(0,None)
    plt.axvline(x = 1000*plasma_start,linestyle = '--')
    plt.axvline(x = 1000*plasma_end, linestyle = '--')

    plt.savefig('graphs/electron_density.png',bbox_inches='tight')
    plt.close()
    
    
    

def main():



    
    for path in ['graphs', 'results' ]:
	if not os.path.exists(path):
	    os.mkdir(path)
	    
    if sys.argv[1] ==  "analysis":
	
	win = 30e-6 #[s]
	t = time()
	tvec,density1,density2 = LoadData()
	dt = (tvec[-1]-tvec[0])/len(tvec)
	print 'load time ', time()-t

	(amplitude2,phase_pila) = Demodulation(density2,win/dt)  
	(amplitude,phase_sinus) = Demodulation(density1,win/dt)

	downsample = int(win/dt/2)
	amplitude = amplitude[::downsample]
	phase_pila = phase_pila[::downsample]
	phase_sinus = phase_sinus[::downsample]
	tvec = tvec[::downsample]
	
	phase = phase_pila-phase_sinus
	phase -= median(phase)
	
	save_adv('results/phase_saw', tvec, phase_pila)
	save_adv('results/phase_sinus', tvec, phase_sinus)
	save_adv('results/phase_substracted', tvec, phase)
	save_adv('results/amplitude_sinus', tvec, amplitude)    

	a = 0.01   #[m]
	f_0 = 75e9 #[Hz]
	lambda_0 = c/f_0
	n_e = 4*pi*m_e*epsilon_0*c**2/(e**2*lambda_0*2*a)*phase
	save_adv('results/electron_density', tvec, n_e)

    if sys.argv[1] ==  "plots":
	graphs()
	saveconst('status', 0)



if __name__ == "__main__":
    main()
    	 

Navigation