1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335 | #!/usr/bin/python2
# -*- coding: utf-8 -*-
#fASTER VERSION THAN MAIN_2, MORE COMPLICATED
#### Microwaves 2.0
#This algorithm calculate transformation of the sin signal from microwaves density measurement to the phase/amplitude space.
# First step of the calculation is estimate of the base frequency and calculation of the complex exponential
#with the same frequency.In the second step is signal multiplied by this exponential
#and resulting low frequency signal is smoothed over Gaussian window. Finally complex phase and amplitude are calculated.
# Authors: Tomas Odstrcil, Ondrej Grover
from time import time
t = time()
#import matplotlib
#matplotlib.rcParams['backend'] = 'Agg'
#matplotlib.rc('font', size='10')
#matplotlib.rc('text', usetex=True) # FIXME !! nicer but slower !!!
#import matplotlib.pyplot as plt
from numpy import *
from scipy.fftpack import fft, ifft,fftfreq
from scipy.signal import fftconvolve, medfilt
from pygolem_lite import save_adv,load_adv,saveconst, Shot
from pygolem_lite.modules import multiplot, get_data, paralel_multiplot
import os
import sys
from matplotlib.pylab import *
print 'include time ',time()-t
def BlockConv(signalin, impulse,mode='full'):
S = len(impulse) # impulse length
L = len(signalin) # signal length
n_ext = ((L/S)+1)*S-L
signalin = hstack((signalin, zeros(n_ext)))
L = len(signalin) # signal length
# find fftsize as the next power of 2
# beyond S*2-1
N = 2**int(log2(S)+2)
# signal blocks for FFT
imp = zeros(N,dtype= impulse.dtype)
sig = zeros(N,dtype=signalin.dtype)
# output signal
sigout = zeros((L/2)*2+S+1, dtype=signalin.dtype)
# copy impulse for FFT
imp[:S] = impulse
spec_imp = fft(imp)
for i in xrange( L/S):
p = S*i
# get block from input
sig[:S] = signalin[p:p+S]
# perform convolution and overlap-add
sigout[p:p+2*S] += ifft(spec_imp*fft(sig))[:2*S]
if mode == 'full':
sigout = sigout[:-n_ext-1]
if mode == 'same':
sigout = sigout[(S-1)/2:-(S+1)/2-n_ext-1]
return sigout
def Demodulation(y,win,dt):
t = time()
y-= mean(y, axis = 0)
n = size(y,0)
N = 2 ** int(ceil(log2(n)))
fourier = fft(y[:,0], N) #calulcate the fourier transfrom for the sine data
#substract the varing offset of the signals
reduct = 5*999
n_ = (n/reduct)*reduct
c = reshape(y[:n_,:],(n_/reduct,reduct,2))
offset = mean(c,axis=1)
c -= offset[:,newaxis,:]
c = swapaxes(c,0,1)
c = c.reshape(-1,2)
#find the carrier frequency
max_frequency_index = argmax(abs(fourier[:N/2]))
f = fftfreq(N,dt)
s = slice(max_frequency_index-100,max_frequency_index+100)
amplitude = abs(fourier[s])
f_carrier = sum(f[s]*amplitude)/sum(amplitude)
#find a unharmonics factor
amplitude = linalg.norm(amplitude)
norm1 = linalg.norm(fourier[:N/2])
k = sqrt(norm1**2-amplitude**2)/norm1
fourier[:] = 0 #cancel out all other frequencies
fourier[max_frequency_index] = 1
cmpl_exp = ifft(fourier)[:n]
gauss = exp(-arange(-3*win,3*win)**2/win**2)
gauss/= sum(gauss)
signal = list()
for i in range(size(y,1)):
signal.append(BlockConv(y[:,i]*cmpl_exp,gauss,mode='same' ))
#it can be faster by application of the block convolution
signal = array(signal, copy = False).T
amplitude = abs(signal)
phase = angle(signal)
phase = unwrap(phase, axis = 0)
print 'calc. time', time()-t
return amplitude,phase,f_carrier,k,norm1/(n/2)
def LoadData():
Data = Shot()
Bt_trigger = Data['Tb']
gd = Shot().get_data
tvec, density1 = gd('any', 'density')
tvec, density2 = gd('any', 'density_2')
start = Data['plasma_start']
end = Data['plasma_end']
return tvec, start, end, density1,density2,Bt_trigger
def graphs():
tvec, phase_pila = load_adv('results/phase_saw')
tvec, phase_sinus = load_adv('results/phase_sinus')
tvec, phase = load_adv('results/phase_substracted')
tvec, phase_corr = load_adv('results/phase_corrected')
tvec, amplitude = load_adv('results/amplitude_sinus')
tvec, n_e = load_adv('results/electron_density')
#print mean(n_e)
data = [[get_data([tvec,-phase_pila+mean(phase_pila)], 'phase 1', 'phase [rad]', xlim=[0,40], fmt="--"),
get_data([tvec,-phase_sinus+mean(phase_sinus)], 'phase 2', 'phase [rad]', xlim=[0,40], fmt="--" ),
get_data([tvec,phase], 'substracted phase', 'phase [rad]', xlim=[0,40], fmt="k" ),
get_data([tvec,phase_corr], 'corrected phase', 'phase [rad]', xlim=[0,40], fmt="k:" )],
get_data([tvec,amplitude], 'amplitude', 'amplitude [a.u.]', xlim=[0,40],ylim=[0,None] )]
multiplot(data, '' , 'graphs/demodulation', (10,6) )
data = get_data('electron_density', 'Average electron density', '$<n_e>$ [$10^{19}\,m^{-3}$]', data_rescale=1e-19)
multiplot(data, '' , 'graphs/electron_density', (9,3) )
paralel_multiplot(data, '', 'icon', (4,3), 40)
def main():
for path in ['graphs', 'results' ]:
if not os.path.exists(path):
os.mkdir(path)
if sys.argv[1] == "analysis":
win = 30e-6 #[s]
t = time()
#if the phase difference is negativ, change order of dens1,dens2
try:
tvec,start, end, density2,density1,Bt_trigger = LoadData()
except:
return
dt = (tvec[-1]-tvec[0])/len(tvec)
density1 = density1[tvec>0]
density2 = density2[tvec>0]
tvec = tvec[tvec>0]
if amax(density1) > amax(density2):
density1,density2 = density2,density1
print 'load time ', time()-t
signals = vstack((density1,density2)).T
amplitude,phase,f_carrier,k,norm_ampl = Demodulation(signals,win/dt,dt)
#signals/= amplitude
#amplitude,phase,f_carrier = Demodulation(signals,win/dt,dt)
downsample = int(win/dt/2)
phase_pila = phase[::downsample,0]
phase_sinus = phase[::downsample,1]
tvec = tvec[::downsample]
phase = phase_pila-phase_sinus
phase -= median(phase[tvec<Bt_trigger])
switched = sign(mean(phase[(tvec > start) & (tvec < end)])) == -1
if switched:
phase *= -1 # rotate the density of cabels were switched
#amplitude = amplitude[::downsample,0]
#else:
amplitude = amplitude[::downsample,0]
amplitude *= norm_ampl/median(amplitude)
apl0 = median(amplitude[tvec < start])
############## detekce skoku ################
t0 = time()
dwin = 20;
N = len(phase)
phase_diff = zeros(N)
for i in arange(N):
p_tmp = phase[max(i-dwin,0):min(i+dwin,N-1)]
phase_diff[i] = amax(p_tmp) - amin(p_tmp)
ind = medfilt((amplitude < 0.8*apl0) & (phase_diff > 2), 3) # remove standalone points
ind = where(ind)[0]
ind_skip = where(diff(ind)> 1)[0]
ind_skip = unique(concatenate([[ind[0]], ind[ind_skip], ind[ind_skip+1] , [ind[-1]]])) # find indexes with skips
phase_new = phase.copy()
if mod(len(ind_skip), 2) == 0 and len(ind_skip) < 20: # fix only the simple issues
Nskip = len(ind_skip)
for i in arange(0,Nskip,2):
i0 = ind_skip[i]
i1 = ind_skip[i+1]
#print i0, i1
phase_new[i1:] += phase_new[i0] - phase_new[i1]
phase_new[i0:i1] = nan
print "time detekce skoku", time() - t0
#i0 = ind[0]
#while i0 < amax(ind):
##for i0 in ind:
#i1 = i0
#for i2 in ind[ind > i1]:
#if i2 - i1 > 1:
#break
#else:
#i1 = i2
#print i1, i2
#i0 = i1
plot(phase_diff)
plot(amplitude / amax(amplitude) * amax(phase_diff))
#plot(ind*amax(phase_diff))
savefig('diff.png')
close()
plot(phase)
plot(phase_new)
#plot(amplitude / amax(amplitude) * amax(phase_diff))
#plot(ind*amax(phase_diff))
savefig('phase.png')
close()
save_adv('results/phase_saw', tvec, phase_pila)
save_adv('results/phase_sinus', tvec, phase_sinus)
save_adv('results/phase_substracted', tvec, phase)
save_adv('results/amplitude_sinus', tvec, amplitude)
save_adv('results/phase_corrected', tvec, phase_new)
p = exp(1-mean((norm_ampl/amplitude)**2.5))
from scipy.constants import c,m_e,epsilon_0,e
ind_plasma = (tvec > start) & (tvec < end)
a = 0.01 #[m]
f_0 = 75e9 #[Hz]
lambda_0 = c/f_0
n_e = 4*pi*m_e*epsilon_0*c**2/(e**2*lambda_0)*phase
save_adv('results/electron_density_line', tvec, n_e)
saveconst('results/electron_density_mean', mean(n_e[ind_plasma]))
n_e /= 2*a
save_adv('results/electron_density', tvec, n_e)
phase_skip = abs(phase[0] - phase[-1])/2*pi
negativity = 1-sum(phase[ind_plasma])/sum(abs(phase[ind_plasma]))
cum_var = mean(abs(diff(phase[ind_plasma]))) / mean(abs(phase[ind_plasma]))
saveconst('results/carrier_freq', abs(f_carrier))
saveconst('results/harmonics_distortion', k)
saveconst('results/norm_ampl', norm_ampl)
saveconst('results/probability', p)
saveconst('results/reliability', phase_skip + negativity+cum_var*10 )
#norm_ampl
print 'carrier_freq ', f_carrier
print 'harmonics_distortion ',k
print 'norm_ampl ',norm_ampl
print 'probability ',p
print "cum_var", cum_var
print "negativity", negativity
print "phase_skip", phase_skip
if sys.argv[1] == "plots":
graphs()
saveconst('status', 0)
if __name__ == "__main__":
main()
|