1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262 | #!/usr/bin/python2
# -*- coding: utf-8 -*-
""" CREATED: 7/2012
AUTHOR: MICHAL ODSTRÄIL
"""
print "importing modules "
import matplotlib
matplotlib.rcParams['backend'] = 'Agg'
matplotlib.rc('font', size='10')
matplotlib.rc('text', usetex=True) # FIXME !! nicer but slower !!!
from numpy import *
from pygolem_lite.config import *
from pygolem_lite.modules import *
from pygolem_lite import Shot
import sys
from scipy.stats.mstats import mquantiles
import time
print "importing modules done "
def plot_data(file_type):
#saveconst('status', 1)
S = Shot()
shot = S.shot_num
plot_params = dict( figsize = (9,7), file_type = file_type)
plasma = S['plasma']
if plasma:
start = S['plasma_start']
end = S['plasma_end']
else:
start = 0
end = 40e-3
# !!!! try to load data during the second basicdiagn reload after all diagnostics !!!!!
t0 = time.time()
max_HXR = 0
HXR_const = 0.025 # 0.005
if S.exist('hxr_smooth'):
[tvec_HXR, HXR] = S['hxr_smooth']
HXR *= HXR_const# 25 # max(mquantiles(HXR,0.995)*1.2,1) ## !! do not renormalize only noise (data < 0.2)
max_HXR = mquantiles(HXR[(tvec_HXR > start) & (tvec_HXR < end)] , 0.99)
max_photo = 0.3
for sig in ['photodiode', 'photodiode_alpha', 'photodiode_other']:
try:
tvec, photodiode = S[sig]
max_photo = max(max_photo, mquantiles(photodiode[(tvec > start) & (tvec < end)] , 0.99) )
except:
pass
ph_range = [0, max( max_photo*1.2 ,max_HXR*1.2 )] # do not allow smaller Yrange than 0-1
shot_title = 'Golem shot No:' + str(shot)
data = [
get_data('loop_voltage', 'Loop voltage', 'U [V]', ylim = [0,None]),
get_data('toroidal_field', 'Toroidal mag. field', 'B$_t$ [T]' , ylim=[0,None], reduction = True),
get_data('plasma_current', 'Plasma current', 'I$_{p}$ [kA]' , data_rescale = 1e-3, reduction = True) if plasma else \
get_data('rogowski_current', 'Chamber current', 'I$_{ch}$ [kA]', data_rescale = 1e-3, reduction = True) ,
[get_data('photodiode', 'Visible', 'Intensity [a.u.]' , ylim = ph_range),
get_data('photodiode_alpha', 'H$_\\alpha$', 'Intensity [a.u.]' , ylim = ph_range)]+
[get_data('photodiode_other', 'Other', 'Intensity [a.u.]' , ylim = ph_range) ] +
[get_data('hxr_smooth', 'HXR', 'Intensity [a.u.]' , ylim = ph_range, data_rescale = HXR_const, reduction = True) if S.exist('hxr_smooth') and S['hxr_mean'] > 0.01 else None ],
[get_data('electron_density', 'Electron density ($n_e$)', 'n$_{e}$ [10$^{19}\cdot$m$^{-3}$]' , data_rescale= 1e-19 ) \
if (plasma and S.exist('electron_density') and S['electron_density_mean'] > 1e16 and S['electron_density:reliability'] < 0.25) else None ]
]
print "start plotting"
multiplot(data, shot_title, 'graphpres', **plot_params)
print "end plotting"
from time import gmtime, strftime
print strftime("%Y-%m-%d %H:%M:%S", gmtime())
# GPf
data = [
get_data('loop_voltage', 'Loop voltage', 'U [V]'),
get_data('toroidal_field', 'Toroidal mag. field', 'B$_t$ [T]', reduction = True),
get_data('rogowski_current', 'Total current', 'I$_{ch}$ [kA]' , data_rescale = 1e-3, reduction = True),
[get_data('photodiode', 'Visible', 'Intensity [a.u.]' ),
get_data('photodiode_alpha', 'H$_\\alpha', 'Intensity [a.u.]' )] ,
]
paralel_multiplot(data, shot_title, 'graphprint', **plot_params)
data = [
get_data('loop_voltage', 'Loop voltage', 'U [V]', xlim = [0,None]),
get_data('toroidal_field', 'Toroidal mag. field', 'B$_t$ [T]' , xlim = [0,None], reduction = True),
[get_data('plasma_current', 'Plasma current', 'I [kA]' , xlim = [0,None], data_rescale = 1e-3, reduction = True),
get_data('chamber_current', 'Chamber current', 'I [kA]',xlim = [0,None], data_rescale = 1e-3, reduction = True),
get_data('rogowski_current', 'Total current', 'I [kA]',xlim = [0,None], data_rescale = 1e-3, reduction = True)],
[get_data('photodiode', 'Visible', 'Intensity [a.u.]', xlim = [0,None]),
get_data('photodiode_alpha', 'H$_\\alpha', 'Intensity [a.u.]' , xlim = [0,None])] ,
]
paralel_multiplot(data, shot_title + ' - final data ', 'graphpresfull', **plot_params)
#GPitegrated
data = [
get_data('loop_voltage', 'Loop voltage', 'U [V]', xlim = [0,None]),
get_data('toroidal_field', 'Toroidal mag. field', 'B$_t$ [T]', xlim = [0,None], reduction = True),
[get_data('rogowski_current', 'Total current', 'I$_p$+I$_{ch}$ [kA]' , xlim = [0,None], data_rescale = 1e-3, reduction = True), \
get_data('plasma_current', 'Plasma current', 'I$_{p}$ [kA]' , xlim = [0,None], data_rescale = 1e-3, reduction = True)] if plasma else \
get_data('rogowski_current', 'Total current', 'I$_{ch}$ [kA]' , xlim = [0,None], data_rescale = 1e-3, reduction = True) ,
[get_data('photo', 'Visible', '[DAS V]' , xlim = [0,None] ),
get_data('haphoto', 'H$_\\alpha', '[DAS V]', xlim = [0,None] )]
]
paralel_multiplot(data, shot_title + " - integrated data", 'graphpresi', **plot_params)
####raw
data = [
get_data('uloop', 'Loop voltage', '[DAS V]', xlim = [0,None] ),
get_data('btor', 'Derivative of mag. field', 'dB$_t$/dt [DAS V]', xlim = [0,None] ),
[get_data('irog', 'Raw Rogowski signal', 'dI$_{p+ch}$/dt [DAS V]', xlim = [0,None] ),
get_data('PlasmaDetect', 'Derivative of I$_{p}$', 'dI$_{p}$/dt [a.u.]', xlim = [0,None] )],
[get_data('photo', 'Visible', '[DAS V]' , xlim = [0,None] ),
get_data('haphoto', 'H$_\\alpha', '[DAS V]', xlim = [0,None] )]
]
paralel_multiplot(data, shot_title + " - raw data", 'graphpresb', **plot_params)
# icon
data = [
get_data('loop_voltage', '', '', xlabel = ""),
[get_data('rogowski_current', '', '', xlabel = "" )] +\
[get_data('plasma_current','', '', xlabel = "" )] if plasma else \
[get_data('rogowski_current', '', '', xlabel = "" )]
]
paralel_multiplot(data, '', 'icon', (4,3), 40)
# GPic
data = [
get_data('loop_voltage', '', 'U [V]', xlim=[0,None], ylim = [0,None], xlabel=""),
[get_data('rogowski_current', '', 'I$_p$+I$_{ch}$ [kA]' , xlim=[0,None], ylim = [0,None], xlabel = "", data_rescale = 1e-3, reduction = True),
get_data('plasma_current', '', 'I$_{p}$ [kA]' , xlim=[0,None], ylim = [0,None], xlabel = "", data_rescale = 1e-3, reduction = True)] \
if plasma else get_data('rogowski_current', '', 'I$_{ch}$ [kA]' , xlim=[0,None], ylim = [0,None], xlabel = "", data_rescale = 1e-3, reduction = True)
]
paralel_multiplot(data, "", 'graphic', (9,1.5), 100, 'horizontal' )
print ' Time: %g' % ( time.time() - t0)
saveconst('status', 0)
def prepare_data():
from basic_diagn import *
t = time.time()
Aktual_PfeifferMerkaVakua = loadconst("Aktual_PfeifferMerkaVakua")
getDate()
save_config()
[Btor, dBtor, BtMax, BtMean] = getBtoroidal()
[Uloop, UloopMax, UloopMean, ReversedCD] = getUloop()
[Irog, dIdt_rogMax, IrogMax, I_start] = getIrogowski(ReversedCD)
[Ipla, Ich] = getIplasma(Uloop,Irog, I_start)
Plasma, PlasmaStart, PlasmaEnd, PlasmaTimeLength = PlasmaDetect(Ipla, dIdt_rogMax)
if Plasma:
[Ipla, Ich] = getIplasma(Uloop,Irog,I_start, PlasmaStart, PlasmaEnd ) # second iteration (hopefully better)
for name, fname in zip(['photovrb', 'haphoto', 'photo'], ['PhotodVrba', 'PhotodHalpha','Photod']):
try:
photodiode = getPhotod(PlasmaStart, PlasmaEnd, name, fname)
getMeanPhotod(photodiode, PlasmaStart, PlasmaEnd, fname)
except Exception, e:
print "Photodiode " + name + " failed " , str(e)
MeanBt = getMeanBt(Btor,PlasmaStart, PlasmaEnd )
TotalCharge = getTotalCharge(Ipla, PlasmaStart,PlasmaEnd )
MeanUloop = getMeanUloop(Uloop, PlasmaStart,PlasmaEnd )
MeanIpla = getMeanCurrent(Ipla, PlasmaStart,PlasmaEnd )
OhmicHeatingPower = getOhmicHeatingPower(MeanUloop,MeanIpla)
PlasmaStatus = Failures(Plasma, UloopMax, dIdt_rogMax, MeanUloop, BtMax, MeanBt, PlasmaStart, PlasmaEnd )
if Plasma:
Qedge = getQedge(MeanBt,MeanIpla)
ElectronTemperature = getMeanElectronTemperature(MeanUloop, MeanIpla)
Umax, Btime, Bbreak, Bipla = getBreakDownVoltage(Uloop, Btor, Ipla, PlasmaStart, PlasmaEnd)
StateEqElectronDensity = getStateEqElectronDensity(Aktual_PfeifferMerkaVakua)
ElectronConfinementTimeFirstApprox = getElectronConfinementTimeFirstApprox(MeanUloop,MeanIpla, StateEqElectronDensity, ElectronTemperature )
ElectronTempTime, medElectronTemp, maxT = getElectronTemperature(Uloop, Ipla, PlasmaStart, PlasmaEnd)
GreenwaldDensity = getGreenwaldDensity(Ipla)
Qedge = getQedgeTime(Btor,Ipla, PlasmaStart,PlasmaEnd)
tranges = array([0.05, 0.1,0.15, 0.2, 0.3, 0.4])*1e-3
nt = len(tranges)
err = zeros(nt)
for i in range(nt):
rate, err[i] = getBreakDownRate(Ipla, Ich, PlasmaStart, PlasmaEnd, tranges[i])
print "win %g rate %g err %g" % (tranges[i], rate, err[i])
err[isnan(err)] = inf
getBreakDownRate(Ipla, Ich, PlasmaStart, PlasmaEnd, tranges[argmin(err)])
ChamberResistance = getChamberResistance(Plasma)
OhmicHeatingPower, OhmicHeatingChamber = getOhmicHeatingPowerTime(Ipla, Ich, Uloop)
MagneticFlux = getMagneticFlux(Uloop)
Saturation = getTransformatorSaturation(Uloop, Plasma, PlasmaEnd)
EnergyBalance(Ipla, Irog, Uloop, PlasmaStart, PlasmaEnd)
try:
BreakdownProba()
except Exception, e:
print "BreakdownProba failed", str(e)
#raise
print "time of basic diagn generation" , time.time() - t
def main():
if sys.argv[1] == "acquisition":
prepare_data()
elif sys.argv[1] == "plots":
plot_data('png')
#plot_data('svgz')
saveconst('status', 0)
elif sys.argv[1] == "postanalysis":
plot_data('png') # replot and include diagnostics
plot_data('svgz')
saveconst('status', 0)
if __name__ == "__main__":
main()
|